
ptg

ptg

Praise for Configuration
Management Best Practices

“Understanding change is critical to any attempt to manage change. Bob Aiello
and Leslie Sachs’s Confi guration Management Best Practices presents funda-
mental definitions and explanations to help practitioners understand change and
its potential impact.”

—Mary Lou A. Hines Fritts, CIO and Vice Provost Academic Programs,
University of Missouri-Kansas City

“Few books on software configuration management emphasize the role of people and
organizational context in defining and executing an effective SCM process. Bob Aiello
and Leslie Sachs’s book will give you the information you need not only to manage
change effectively but also to manage the transition to a better SCM process.”
—Steve Berczuk, Agile Software Developer, and author of Software Configuration

Management Patterns: Effective Teamwork, Practical Integration

“Bob Aiello and Leslie Sachs succeed handsomely in producing an important book,
at a practical and balanced level of detail, for this topic that often ‘goes without
saying’ (and hence gets many projects into deep trouble). Their passion for the topic
shows as they cover a wonderful range of topics—even culture, personality, and
dealing with resistance to change—in an accessible form that can be applied to any
project. The software industry has needed a book like this for a long time!”

—Jim Brosseau, Clarrus Consulting Group, and author of Software
Teamwork: Taking Ownership for Success

“A must read for anyone developing or managing software or hardware projects.
Bob Aiello and Leslie Sachs are able to bridge the language gap between the myr-
iad of communities involved with successful Configuration Management imple-
mentations. They describe practical, real world practices that can be implemented
by developers, managers, standard makers, and even Classical CM Folk.”

— Bob Ventimiglia, Bobev Consulting

ptg

“A fresh and smart review of today’s key concepts of SCM, build management,
and related key practices on day-to-day software engineering. From the voice of
an expert, Bob Aiello and Leslie Sachs offer an invaluable resource to success
in SCM.”

—Pablo Santos Luaces, CEO of Codice Software

 “Bob Aiello and Leslie Sachs have a gift for stimulating the types of conversa-
tion and thought that necessarily precede needed organizational change. What
they have to say is always interesting and often important.”

—Marianne Bays, Business Consultant, Manager and Educator

ptg

Configuration
Management Best
Practices

ptg

This page intentionally left blank

ptg

Configuration
Management Best
Practices
Practical Methods that Work in the
Real World

Bob Aiello and Leslie Sachs

Upper Saddle River, NJ • Boston • Indianapols • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales (800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Aiello, Bob, 1958-
 Configuration management best practices : practical methods that work in the real world / Bob
Aiello, Leslie A. Sachs.
 p. cm.
 ISBN 978-0-321-68586-5 (pbk. : alk. paper) 1. Information technology--Management. 2.
Configuration management. I.
 Sachs, Leslie A., 1961- II. Title.
 T58.64.A35 2010
 004.068’5--dc22
 2010022175

ISBN-13: 978-0-321-68586-5
ISBN-10: 0-321-68586-5

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax (617) 671-3447

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.

First printing August 2010

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Chris Guzikowski

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-
Shirley

Copy Editor
Keith Cline

Indexer
Erika Millen

Proofreader
Sheri Cain

Cover Designer
Gary Adair

Compositor
Gloria Schurick

ptg

Dedicated to Benjamin K. Sachs

Those who met Ben did not easily forget the soft-spoken, yet
articulate engineer with the deep blue eyes and gracious manner.

Respected by family, friends, and business associates alike, he
was known for his remarkable intelligence, integrity, and pas-

sion for excellence. Ben is also remembered fondly by the many
people whose lives he touched with his warmth, kindness, and

generosity. His successful career provided ample evidence to sup-
port the firm belief that “doing the right thing” will inevitably

result in better quality, higher productivity, increased shareholder
value, and more satisfied, loyal customers. Ever the promoter
of good corporate citizenship, Ben combined his high morals

and ethical standards with a natural optimism to create win-win
resolutions for even the most challenging situations. Both our

personal and professional development have been tremendously
enhanced as a result of his wisdom and loving guidance.

Thank you, Dad, for never passing up the opportunity to
enthusiastically express both your confidence in our abilities
and pride in our accomplishments and for so eagerly sharing

your infectious joy in living!

Bob Aiello and Leslie Sachs

ptg

This page intentionally left blank

ptg

Contents

Preface xxi
Introduction xxxiii

PART I THE CORE CM BEST PRACTICES FRAMEWORK 1

Chapter 1 Source Code Management . ..3

Terminology and Source Code Management 5
Goals of Source Code Management . .. 5
Principles of Source Code Management 6
1.1 Why Is Source Code Management Important? 6
1.2 Where Do I Start? ... 7
1.3 Source Code Management Core Concepts 9

1.3.1 Creating Baselines and Time Machines 9
1.3.2 Reserved Versus Unreserved Checkouts 10
1.3.3 Sandboxes and Workspaces 11
1.3.4 Variant Management (Branching) 11
1.3.5 Copybranches Versus Deltas 12
1.3.6 How to Handle Bugfixes . .. 12
1.3.7 Streams 14
1.3.8 Merging . .. 15
1.3.9 Changesets . .. 16

1.4 Defect and Requirements Tracking . .. 16
1.5 Managing the Globally Distributed Development Team 17
1.6 Tools Selection 19

1.6.1 Open Source Versus Commercial 21
1.6.2 Product Maturity and Vendor Commitment 21
1.6.3 Extensibility and Open API 22
1.6.4 Don’t Overengineer Your Source Code
 Management 22

1.7 Recognizing the Cost of Quality (and Total Cost of
Ownership) . .. 23

1.7.1 Building Your Source Code Management Budget 24

ix

ptg

x Contents

1.8 Training 24
1.8.1 The “Bob Method” for Training 24

1.9 Defining the Usage Model . .. 25
1.10 Time to Implement and Risks to Success 26
1.11 Establishing Your Support Process 26
1.12 Advanced Features and Empowering Users 27
Conclusion . .. 27

Chapter 2 Build Engineering 29

Goals of Build Engineering 30
Principles of Build Engineering 30
2.1 Why Is Build Engineering Important? 31
2.2 Where Do I Start? . .. 32
2.3 Build Engineering Core Concepts 32

2.3.1 Version IDs or Branding Your Executables 32
2.3.2 Immutable Version IDs 33
2.3.3 Stamping In a Version Label or Tag 33
2.3.4 Managing Compile Dependencies 33
2.3.5 The Independent Build 34

2.4 Core Considerations for Scaling the Build Function 34
2.4.1 Selling the Independent Build 35
2.4.2 Overengineering the Build . .. 35
2.4.3 Testing Your Own Integrity 36
2.4.4 Reporting to Development Can Be a Conflict

of Interest 37
2.4.5 Organizational Choices . .. 37

2.5 Build Tools Evaluation and Selection 38
2.5.1 Apache Ant Enters the Build Scene 38
2.5.2 Of Mavens and Other Experts 38
2.5.3 Maven Versus Ant . .. 39
2.5.4 Using Ant for Complex Builds 39
2.5.5 Continuous Integration . .. 40
2.5.6 CI Servers 40
2.5.7 Integrated Development Environments 40
2.5.8 Static Code Analysis 41
2.5.9 Build Frameworks . .. 41

ptg

xiContents

2.5.10 Selecting Your Build Tools 41
2.5.11 Conducting the Bakeoff and Reaching Consensus .. 42

2.6 Cost of Quality and Training 42
2.7 Making a Good Build Better . .. 42

2.7.1 “Bob-Proofing” Your Build 43
2.7.2 Test-Driven Builds . .. 43
2.7.3 Trust, But Verify . .. 43
2.7.4 The Cockpit of a Plane 44

2.8 The Role of the Build Engineer . .. 44
2.8.1 Know What You Build 45
2.8.2 Partner with Developers 46
2.8.3 Drafting a Rookie 46

2.9 Architecture Is Fundamental . .. 46
2.10 Establishing a Build Process 47

2.10.1 Establishing Organizational Standards 47
2.11 Continuous Integration Versus the Nightly Build 47
2.12 The Future of Build Engineering . .. 48
Conclusion . .. 48

Chapter 3 Environment Configuration 49

Goals of Environment Configuration Control 50
Principles of Environment Configuration Control 51
3.1 Why Is Environment Configuration Important? 51
3.2 Where Do I Start? . .. 51
3.3 Supporting Code Promotion 52
3.4 Managing the Configuration . .. 52

3.4.1 Which Database Are You Using? 53
3.4.2 Did That Trade Go Through? 53
3.4.3 How About a Few Tokens? 54
3.4.4 Centralizing the Environment Variable Assignment .. 55

3.5 Practical Approaches to Establishing a CMDB 55
3.5.1 Identify and Then Control . .. 56
3.5.2 Understanding the Environment Configuration 56

3.6 Change Control Depends on Environment Configuration 56
3.7 Minimize the Number of Controls Required 57
3.8 Managing Environments . .. 57

ptg

xii Contents

3.9 The Future of Environment Configuration 57
Conclusion . .. 58

Chapter 4 Change Control 59

Goals of Change Control . .. 60
Principles of Change Control . .. 60
4.1 Why Is Change Control Important? 61
4.2 Where Do I Start? . .. 61
4.3 The Seven Types of Change Control 61

4.3.1 A Priori . .. 62
4.3.2 Gatekeeping . .. 62
4.3.3 Configuration Control . .. 62
4.3.4 Change Advisory Board . .. 63
4.3.5 Emergency Change Control 64
4.3.6 Process Engineering . .. 64
4.3.7 Senior Management Oversight 64

4.4 Creating a Change Control Function 65
4.5 Examples of Change Control in Action 65

4.5.1 The 29-Minute Change Control Meeting 66
4.5.2 Change Control at the Investment Bank 66
4.5.3 Change Control at the Trading Firm 67
4.5.4 Forging Approvals . .. 69

4.6 Don’t Forget the Risk 69
4.7 Driving the CM Process Through Change Control 69
4.8 Entry/Exit Criteria . .. 70
4.9 After-Action Review 71
4.10 Make Sure That You Evaluate Yourself 71
Conclusion . .. 71

Chapter 5 Release Management 73

Goals of Release Management . .. 74
Principles of Release Management . .. 74
5.1 Why Is Release Management Important? 75
5.2 Where Do I Start? . .. 75
5.3 Release Management Concepts and Practices 76

5.3.1 Packaging Strategies That Work 76
5.3.2 Package Version Identification 76

ptg

xiiiContents

5.3.3 Sending a Release Map with the Release 77
5.3.4 What Does Immutable Mean? 77

5.4 The Ergonomics of Release Management 77
5.4.1 Avoiding Human Error . .. 78
5.4.2 Understanding the Technology 78
5.4.3 Tools from Build Engineering 79
5.4.4 Avoiding Human Error . .. 79
5.4.5 My Own Three-Step Process 79
5.4.6 Too Many Moving Parts . .. 80

5.5 Release Management as Coordination 80
5.5.1 Communicating the Status of a Release 80
5.5.2 Don’t Forget the Release Calendar 80
5.5.3 RM and Configuration Control 81

5.6 Requirements Tracking . .. 81
5.7 Taking Release Management to the Next Level 81

5.7.1 Using Cryptography to Sign Your Code 82
5.7.2 Operating Systems Support for Release Management 82
5.7.3 Improving Your RM Process 82

Conclusion . .. 83

Chapter 6 Deployment 85

Goals of Deployment . .. 86
Principles of Deployment . .. 86
6.1 Why Is Deployment Important? 87
6.2 Where Do I Start? . .. 87
6.3 Practices and Examples . .. 87

6.3.1 Staging Is Key 87
6.3.2 Scripting the Release Process Itself 89
6.3.3 Frameworks for Deployment 89
6.3.4 What If Bob Makes a Mistake? 89
6.3.5 More on the Depot 90
6.3.6 Auditing Your Release . .. 90

6.4 Conducting a Configuration Audit 91
6.5 Don’t Forget the Smoke Test . .. 92
6.6 Little Things Matter a Lot . .. 92
6.7 Communications Planning 92

6.7.1 Announcing Outages and Completed Deployments ... 93

ptg

xiv Contents

6.8 Deployment Should Be Delegated . .. 93
6.9 Trust But Verify 93
6.10 Improving the Deployment Process 93
Conclusion . .. 94

PART II ARCHITECTURE AND HARDWARE CM 95

Chapter 7 Architecting Your Application for CM 97

Goals of Architecting Your Application for CM 98
7.1 Why Is Architecture Important? 99
7.2 Where Do I Start? . .. 99
7.3 How CM Facilitates Good Architecture 99
7.4 What Architects Can Learn From Testers 99

7.4.1 Testing as a Service to the Developers 100
7.5 Configuration Management–Driven Development (CMDD) . 101
7.6 Coping with the Changing Architecture 101
7.7 Using Source Code Management to Facilitate Architecture ... 102
7.8 Training Is Essential 102
7.9 Source Code Management as a Service 103
7.10 Build Engineering as a Service . .. 103
Conclusion . .. 103

Chapter 8 Hardware Configuration Management 105

Goals of Hardware CM . .. 106
8.1 Why Is Hardware CM Important? 106
8.2 Where Do I Start? . .. 107
8.3 When You Can’t Version Control a Circuit Chip 107

8.3.1 A Configuration Item by Any Other Name 107
8.3.2 Version Control for Design Specifications 108

8.4 Don’t Forget the Interfaces 108
8.5 Understanding Dependencies . .. 108
8.6 Traceability . .. 108
8.7 Deploying Changes to the Firmware 109
8.8 The Future of Hardware CM 109
Conclusion . .. 109

ptg

xvContents

PART III THE PEOPLE SIDE OF CM 111

Chapter 9 Rightsizing Your Processes . .. 113

Goals of Rightsizing Your CM Processes 114
9.1 Why Is Rightsizing Your Processes Important? 115
9.2 Where Do I Start? . .. 115
9.3 Verbose Processes Just Get in the Way 116
9.4 SPINs and Promoting the CMM . .. 117
9.5 Disappearing Verbose Processes 117

9.5.1 Agile Processes Just Work 118
9.5.2 Open Unified Process 118
9.5.3 Getting Lean 119
9.5.4 An Extremely Brief Description That I Hope
 Motivates You to Take a Closer Look at Lean

Software Development . .. 119
9.6 The Danger of Having Too Little Process 120
9.7 Just-in-Time Process Improvement 120
9.8 Don’t Overengineer Your CM 120
9.9 Don’t Forget the Technology 121
9.10 Testing Your Own Processes . .. 121
9.11 Process Consultation . .. 122

9.11.1 Transparency That Is Genuine 122
9.12 Create a Structure for Sustainability 122
Conclusion . .. 123

Chapter 10 Overcoming Resistance to Change 125

Goals of Overcoming Resistance to Change 126
10.1 Why Is Overcoming Resistance to Change Important? 127
10.2 Where Do I Start? . .. 127
10.3 Matching Process to Culture . .. 127
10.4 Mixing Psychology and Computer Programming 129
10.5 Process Improvement from Within 129
10.6 Picking Your Battles 131
10.7 Fostering Teamwork . .. 131
10.8 Why Good Developers Oppose Process Improvement 132
10.9 Procedural Justice 132

ptg

xvi Contents

10.10 Input from Everyone . .. 132
10.11 Showing Leadership 133
10.12 Process Improvement People May Be the Problem 133
10.13 Combining Process and Technology Training 134
10.14 Listening to the Rhythm 135
10.15 Processes Need to Be Tested 136
10.16 Baby Steps and Process Improvement 136
10.17 Selling Process Improvement . .. 137
10.18 What’s in It for Me? 137
10.19 Process Improvement as a Service 137
10.20 Guerrilla Tactics for Process Improvement 138
Conclusion . .. 139

Chapter 11 Personality and CM: A Psychologist Looks at
the Workplace 141

Goals of Understanding Personality: What’s in It for Me? 142
11.1 Personality Primer for CM Professionals 144
11.2 What Do CM Experts Need to Consider in

Terms of Personality? 146
11.2.1 Communication Styles . .. 147
11.2.2 Do Men and Women Use and Interpret

Language Differently? . .. 147
11.2.3 Effective Consultation . .. 148
11.2.4 Verifying the Message . .. 148
11.2.5 Information Processing Preferences 149
11.2.6 Birth Order at Work . .. 150
11.2.7 Firstborns as Leaders . .. 150
11.2.8 The Middle-Born Compromiser 151
11.2.9 The Youngest as Initiator 151
11.2.10 The Only Child . .. 151
11.2.11 Being Yourself . .. 152

11.3 Applying Psychology to the Workplace 152
11.3.1 Effective Teamwork Begins at Home 153
11.3.2 Volleyball or Effective Collaboration 153
11.3.3 Embedding Build Engineers and Testers in

the Development Team 153
11.3.4 Blackbox Versus Whitebox Versus Graybox 154

ptg

xviiContents

11.3.5 Group Dynamics That Can Damage the
 Organization 154
11.3.6 Where CM and QA Fit In 154

11.4 Family Dynamics! . .. 155
11.4.1 Indecisiveness 155

11.5 Workplace Culture and Personality 156
11.5.1 Personality and Structure 156
11.5.2 We Already Invented All the Good Ideas 157
11.5.3 Loose Cannons Who Don’t Want to Comply 157
11.5.4 Enforcing Process, While Still Keeping the

Train Moving 158
11.5.5 Formulas for Success . .. 158
11.5.6 Caveats 159

Conclusion . .. 159

Chapter 12 Learning From Mistakes That I Have Made 161

Goals of Learning from Mistakes . .. 162
12.1 Why Is It Important to Learn from Our Mistakes? 162
12.2 Where Do I Get Started? . .. 162
12.3 Understanding Our Mistakes 163
12.4 The Mistakes I Have Made . .. 163

12.4.1 Missing the Big Picture 163
12.4.2 Writing Release Automation Can Be Challenging . 164
12.4.3 Thinking That a Good Process Will Carry Itself ... 165
12.4.4 Failing to Gain Consensus 165
12.4.5 Failing to Show Leadership for CM 165
12.4.6 Becoming Part of the Problem 165
12.4.7 Forgetting to Ask for Help 166

12.5 Turning a Mistake into a Lesson Learned 166
12.5.1 Clarifying What I Need to Get the Job Done 166
12.5.2 Getting the Training That I Need 167

12.6 Common Mistakes That I Have Seen Others Make 167
12.6.1 Ivory Tower 167
12.6.2 Failing to Get Technical and Hands-On 167
12.6.3 Not Being Honest and Open 168

Conclusion . .. 168

ptg

xviii Contents

PART IV COMPLIANCE, STANDARDS, AND FRAMEWORKS 169

Chapter 13 Establishing IT Controls and Compliance 171

Goals of Establishing IT Controls and Compliance 172
13.1 Why Are IT Controls and Compliance Important? 173
13.2 How Do I Get Started? . .. 173
13.3 Understanding IT Controls and Compliance 174

13.3.1 Sarbanes-Oxley Act of 2002 174
13.3.2 Management Assessment of Internal Controls 174
13.3.3 Committee of Sponsoring Organizations 175
13.3.4 Cobit as a Framework for IT Controls 176
13.3.5 What Does It Mean to Attest to And Report

on the Assessment Made by the Management? 176
13.3.6 Health Insurance Portability and Accountability

Act of 1996 . .. 177
13.3.7 When the GAO Comes Knocking 177
13.3.8 Results of the Audit . .. 178
13.3.9 GAO Reports on NARA’s Configuration

Management Practices . .. 179
13.3.10 ERA Configuration Management Plan 179
13.3.11 Areas for Improvement 180
13.3.12 Understanding the Results of the Audit 180
13.3.13 Office of the Comptroller of the Currency 181

13.4 Essential Compliance Requirements 181
13.4.1 Providing Traceability of Requirements to

Releases . .. 182
13.4.2 Production Separation of Controls 182

13.5 The Moral Argument for Supporting CM Best Practices 182
13.6 Improving Quality and Productivity Through Compliance . 183
13.7 Conducting a CM Assessment . .. 183

13.7.1 Assessment First Steps . .. 184
13.7.2 Listen First Regardless of How Bad the

Situation Appears 184
Conclusion . .. 185

Chapter 14 Industry Standards and Frameworks 187

Goals of Using Industry Standards and Frameworks 188
14.1 Why Are Standards and Frameworks Important? 188

ptg

xixContents

14.2 How Do I Get Started? . .. 189
14.3 Terminology Required 189

14.3.1 Configuration Item 189
14.3.2 Configuration Identification 190
14.3.3 Configuration Control . .. 190
14.3.4 Interface Control . .. 190
14.3.5 Configuration Status Accounting 191
14.3.6 Configuration Audit 191
14.3.7 Subcontractor/Vendor Control 192
14.3.8 Conformance Versus Noncompliance 192

14.4 Applying These Terms to the Standards and Frameworks .. 193
14.5 Industry Standards 193

14.5.1 IEEE 828—Standard for Software Configuration
Management Plans . .. 193

14.5.2 ISO 10007—Quality Management Systems—
Guidelines for Configuration Management 195

14.5.3 ANSI/ITAA EIA-649-A—National Consensus
Standard for Configuration Management 196

14.5.4 ISO/IEC/IEEE 12207 and 15288 196
14.6 Industry Frameworks 196

14.6.1 ISACA Cobit . .. 197
14.6.2 CMM/CMMI 207
14.6.3 itSMF’s ITIL Framework 208
14.6.4 SWEBOK . .. 214
14.6.5 Open Unified Process (OpenUP) 215
14.6.6 Agile/SCRUM 216

Conclusion . .. 217
Index . .. 219

ptg

This page intentionally left blank

ptg

Preface

Confi guration management (CM) plays a critical role in any technology devel-
opment effort. I have been involved with implementing and supporting CM for
more than 25 years, and much of what I am about to discuss comes directly from
my own personal experience. I have implemented and supported each of these
CM practices, often with the agreement that I could be woken in the middle of
the night if my processes/automation did not work as expected. As an instruc-
tor, I have taught industry-strength CM tools to 900+ technology professionals
(again with the offer that they got my home phone number upon successfully
completing my class). My colleagues and students have consistently indicated
that my passion and love for this discipline has always been abundantly clear.
It is my view that configuration management consists of six functional areas:

1. Source code management

2. Build engineering

3. Environment configuration

4. Change control

5. Release engineering

6. Deployment

I have searched for, but never found, any single book (or even a series of
books) that covered all of these functional areas. Most CM books are either too
narrowly focused on one key area (such as building code with Ant) or so “ivory
tower” that they did not give me enough information on how to really imple-
ment these functions in a practical real-world environment. It’s nice to point out
the need to “maintain control of all configuration items,” but unless you tell me
exactly how to do that in a practical and realistic way, the advice is not truly us-
able. It is my intent both to cast a wide net on the CM practices that you need to
understand and to provide enough detail so that you know not only what each
CM function entails, but, just as important, how to implement each of the CM
functions. I expect that my readers will hold me to that commitment. The URL
of our supporting website is http://cmbestpractices.com.

xxi

http://cmbestpractices.com

ptg

xxii Preface

The Traditional Definition of Configuration
Management

Confi guration management, or in this context, software configuration manage-
ment (SCM), has a traditional definition consisting of four specific functions:

1. Confi guration identifi cation

2. Change control

3. Status accounting

4. Confi guration audit

These functions have long been described in industry standards and frame-
works and obviously viewed as essential to any valid configuration management
effort. Although I agree completely that these functions are correct and essential,
I find their terminology to be difficult for many technology professionals to
understand and appreciate. In this book, I discuss the traditional CM functions,
and I suggest a framework for understanding and implementing configuration
management in a way that I believe reflects current industry practices. Specifi-
cally, I show the relationship between the four classic functions and the six func-
tions of source code management, build engineering, environment configura-
tion, change control, release engineering, and deployment, which I believe more
closely reflects the way that CM is actually done on a day-to-day basis. This is
an important focus of my efforts to make configuration management best prac-
tices more approachable and practical for technology professionals to enjoy as
part of their own process-improvement efforts.

Terminology and CM

Confi guration management, like many other disciplines, suffers from the use of
confusing terminology. I am not going to solve that problem in this book, but
I do endeavor to at least not make the situation worse. The acronym SCM has
been used to refer to both source code management and, more recently, soft-
ware configuration management. One of my most knowledgeable colleagues has
prevailed upon me to not make the situation worse, so I use the SCM acronym
only to refer to the broader software configuration management, which is a spe-
cialization of configuration management (as opposed to hardware configuration

ptg

xxiii

Preface

management discussed in Chapter 8, “Hardware Confi guration Management”).
Similarly, the acronym CI is used to refer to both configuration items and con-
tinuous integration. CM terminology can be quite confusing. I can’t do much
about the confusion caused by this dual use of CI as an acronym, as it is perva-
sive, but I do what I can to be as clear as possible. There are similar challenges
with regard to the terms configuration control and release management. I do
my best to present a clear explanation of these terms and, more importantly,
explain how to implement these practices in a real-world setting. Once again, I
hope that you will join me online if you want to discuss the use of these terms
as well as their evolution. This is an exciting time for configuration management
because many technology professionals are recognizing that CM impacts every-
thing from IT service management (ITSM) to the entire Agile ALM. Whenever
possible, I endeavor to use the defi nitions in the IEEE’s SEVOCAB: Software
and Systems Engineering Vocabulary, which, at the time of this writing, can be
found at www.computer.org/sevocab.

Why I Love CM

I love CM because it is a creative and exciting endeavor that can signifi cantly
add value by improving quality and productivity in any technology project. Not
only do I discuss what I have learned, but I also relate the combined experience
of thousands of CM experts who have kindly shared their own expertise and
best practices with me over the years that I have been engaged in this work. I
owe each of these fine colleagues a debt of gratitude for all that they have shared
with me. I have written and published many articles on configuration manage-
ment and thoroughly enjoyed the feedback that I have received (especially when
those supplying it disagreed with me and offered other practical approaches to
solving thorny CM-related problems). I anticipate that this book will also gen-
erate considerable interaction with my colleagues, especially through the sup-
porting http://cmbestpractices.com website that I have created. Please visit this
website for up-to-date information on the topics that we discuss in this book
as well as to give me feedback about your own experiences with implementing
confi guration management.

Why I Wrote This Book

I wrote this book to share my expertise and experience with implementing all
aspects of CM in realistic business, engineering, and government environments.

www.computer.org/sevocab
http://cmbestpractices.com

ptg

xxiv Preface

 I hope that you find this information to be practical, comprehensive, and helpful
in implementing CM in a variety of real-world situations.

Some topics in CM are evolving so quickly that writing a book on them
would be a daunting task. For example, as I write this Preface, my “day job” is
to implement IBM’s latest Application Lifecycle Management (ALM) solution,
which includes a brand new source code management and automated workflow
solution. Therefore, for this book, I discuss how to select a CM tool in only gen-
eral terms, but restrict tool-specific comments to my supporting website (http://
cmbestpractices.com/tools) so that the information can be kept current and ac-
curate. I also hope that you hold me accountable for the accuracy of every word
that I write because I have very strong personal views that CM is essential on
a moral, ethical, and theological basis. Although CM is not my “religion,” do-
ing honest and high-quality work is certainly part of my religious belief system.
I also view spreading CM best practices as being a model for good corporate
citizenship. I have been very active in the virtual community that develops and
supports configuration management as well as other aspects of application de-
velopment. On any given day, you can see technology professionals providing
each other with substantial assistance without regard for whether they work
for competing organizations. The community is truly culturally diverse, multi-
lingual, and universal in its respect for and acceptance of others. I am proud to
be part of this work and wish my efforts to promote CM best practices to be
part of a wider movement to promote effective IT controls, responsible business
leadership, and good corporate citizenship resulting in greater services and value
for everyone who shares this increasingly tiny world that we live in. To say this
in another way, I believe that every government agency, financial services firm
(including banks, hedge funds, and insurance firms), along with firms that are in
the medical, pharmaceutical, and defense (and every other) industry should be
required to implement proper IT controls to protect the public who rely on their
services as well as shareholder value. I wrote this book, in part, to help transi-
tion this effort from being a burden to instead being a journey in improving
productivity and quality. It is my belief that implementing IT controls, includ-
ing CM best practices, in a pragmatic way should result in higher profitability
for the members of the firms, their shareholders, and the public which depends
upon their services.

Classroom Materials

Students and college professors are also welcome to contact us with regard to
supporting materials (such as lecture slides, course curriculum, etc.) for the

http://cmbestpractices.com/tools
http://cmbestpractices.com/tools

ptg

xxvPreface

classroom. Where feasible, it is our intent to offer to visit and lecture in educa-
tional settings that adopt this book for classroom instruction purposes. Please
contact Leslie Sachs who will coordinate these efforts.

Who Should Read This Book

Technology professionals including development managers, system architects,
developers, systems engineers, hardware engineers, quality assurance, quality
engineering, operations engineers, and technology project managers will all
benefi t from the information in this book. CTOs, IT auditors, and corporate
managers will especially enjoy the sections on establishing IT controls and com-
pliance. Whether you are an Agile enthusiast or working with a classic waterfall
lifecycle, this book will help you get your job done better. CM is all about good
corporate citizenship. The news media love to report instances of corporate
greed and incompetence among those who have a responsibility for providing
and maintaining technology for the public good. CM best practices help ensure
that the global economy runs smoothly, ATMs work correctly, air traffic control
systems remain online, and so on. If you want your technology development ef-
forts to be more effi cient and to yield higher-quality products, this book is for
you.

How to Read This Book

You should at least skim the Introduction because it will give you an overview of
the CM functions and their overall linkages. You should also feel free to skip to
the area that you need help with next. I have endeavored to write each chapter
so that it can be read and used separately. In practice, this has often been how I
implemented CM. For example, I have often skipped directly to solving the most
urgent problems (as indicated by the customer) without being rigid about the
order of implementing CM functions. That said, there are some dependencies,
and I do my best to describe them, too.

How This Book Is Organized

This book is organized into 14 chapters divided into four parts. Part I consists
of six chapters covering source code management, build engineering, change

ptg

xxvi Preface

 control, environment configuration, release engineering, and deployment. Part
II covers architecture and hardware CM, and Part III covers the essential people
issues that you need to know to effectively implement CM best practices. Part IV
covers compliance and the standards (such as IEEE, ISO, EIA) and frameworks
(such as ITIL, Cobit, CMMI) needed to establish effective IT controls. What fol-
lows in the next section is a short description of each chapter.

Part I: The Core CM Best Practices Framework

Six chapters make up the core CM best practices framework.

Chapter 1: Source Code Management
Source code management is an essential starting point for any confi guration
management function. In this chapter, we discuss the requirements for an effec-
tive source code management effort and some of the core concepts. In source
code management, you make sure that you know where all the artifacts needed
by your application are located and that they are all properly identified and can
be managed effectively. If we were baking a cake, then source code management
would help you ensure that you have all the correct ingredients on hand and in
the proper amount.

Chapter 2: Build Engineering
Build engineering includes the compilation of all the confi guration items that
go into a release. Your build engineering practices need to be effi cient, reliable,
and repeatable. Build engineering also includes procedures for building in the
essential version IDs that are required for configuration identification. Build en-
gineering involves mixing the batter and baking the cake itself.

Chapter 3: Environment Configuration
Environment configuration involves handling the compile and runtime changes
necessary for the promotion of code from development to QA to production. It
also includes the confi guration and management of the requirements. Environ-
ment confi guration ensures that you have the shelf ready to show off the great
cake that you baked.

Chapter 4: Change Control
There are seven functions in change control: evaluating requests for change,
gatekeeping (such as promotion), configuration control, emergency change con-
trol, process changes, advising on the downstream impact of a potential change,
and senior management oversite of change control. Change control decides

ptg

xxvii

Preface

when the cake is baked and ready to be taken from the oven and sent to the
happy person who will enjoy the cake.

Chapter 5: Release Management
Release management involves packaging the configuration items into compo-
nents that can be reliably promoted and deployed as needed. Release manage-
ment is effectively putting your cake into the nice box with the open window so
that others can see and appreciate the fine work that you have done.

Chapter 6: Deployment
Deployment should be a narrowly defi ned function of promoting the prepack-
aged release to QA or production as needed. This is effectively putting your cake
on the truck to be delivered to your consumers. (Make sure that you get my
home address correct for delivery.)

This completes the first part of the book, covering what I view as being the
essential core CM competencies necessary for any CM function. I am really get-
ting hungry now, so I have to stop using a cake as a metaphor for CM. The rest
of the chapters make up the eight supporting functions that are also important
for the implementation of an effective CM effort.

Part II: Architecture and Hardware CM

Architecture and hardware also are candidates for CM.

Chapter 7: Architecting Your Application for CM
This is an often-overlooked aspect of configuration management and involves
recognizing the interrelationship between application architecture and confi gu-
ration management. The essential nature of CM is the same whether you are
implementing it on a mainframe or your favorite handheld device. But the actual
procedures will vary signifi cantly based on the architecture of your application.
So, implementing CM on a WINTEL platform may be very different from on
a UNIX/Linux platform using Java SOA or C++. This chapter is about under-
standing that relationship. This chapter is also about how CM helps implement
excellent architecture. CM best practices help your team to develop excellent
application and systems architecture.

Chapter 8: Hardware Configuration Management
I need to write an entire book on hardware configuration management. There
just isn’t enough recognition of its value and importance in the CM field. I have

ptg

xxviii Preface

been frequently asked to write about hardware CM. This chapter begins what I
am sure will be a longer journey.

Part III: The People Side of CM

You can’t afford to ignore the people side of any business or organizational en-
deavor. CM is no different. I have been involved and observed many successful
efforts to implement CM best practices. In the situations where the results were
less than acceptable or even truly a failure, it was almost always due to people
issues. This chapter gives you very practical advice from real world experiences
on how to deal with the people side of CM. This is a very important part of the
book for your success.

Chapter 9: Rightsizing Your Processes
My whole career has been focused on implementing process improvement. I
have learned that too much process is just as bad as not enough. This chapter
is about finding the right balance and implementing just enough process to get
the job done.

Chapter 10: Overcoming Resistance to Change
Having a great process does not help anyone if you can’t get your team to accept
the process and actually start working in a new and better way. This chapter is
about overcoming resistance to change and getting the team to accept and enjoy
the new way of doing things.

Chapter 11: Personality and CM: A Psychologist Looks at the
Workplace
Leslie Sachs takes the lead in this chapter as she describes the essential people
skills that you need to be effective in implementing CM best practices. I get
scared when I read Leslie’s work because she seems to always be eavesdropping
on my conversations. Read this chapter if working with people is important to
you.

Chapter 12: Learning From Mistakes That I Have Made
I have made lots of mistakes in my career. I have achieved a lot, yet I have also
failed to achieve as much as I had hoped. But I have learned a lot from my own
mistakes, and this chapter is my effort to share some of my personal improve-
ment efforts to learn from my own mistakes and shortcomings. This chapter
could have been its own book or perhaps the size of a small encyclopedia.

ptg

xxixPreface

Part IV: Compliance, Standards, and Frameworks

The book ends with the issues involved in establishing IT controls, complying
with regulations, and the use of industry standards and frameworks. Second
only to the people side of CM, understanding industry standards and frame-
works is one of the most powerful capabilities that you need to master to suc-
cessfully implement CM best practices. This information will also help you
overcome resistance to change because you will rightly be able to explain what
thousands (or perhaps hundreds of thousands) of other technology profession-
als have reviewed, debated and determined to be the official accepted industry
best practices.

Chapter 13: Establishing IT Controls and Compliance
Establishing IT controls and compliance is one of my own favorite topics. I like
to focus on using these efforts to improve quality and productivity while you are
also getting ready to pass your audit. IT controls and compliance is a really criti-
cal topic for many organizations, and I expect that if you need to meet industry
regulations, you will find this information to be extremely valuable.

Chapter 14: Industry Standards and Frameworks
I strongly advocate the use of industry standards and frameworks, but I also
believe that much of what has been previously written is diffi cult to understand
and even more difficult to implement. I believe that those of us involved with
creating industry standards and frameworks need to write more practical mate-
rial on how to actually implement standards and frameworks in a realistic and
pragmatic way. My focus, in this chapter, is on describing my own personal
journey with implementing process improvement using the guidance described
in standards and frameworks along with the essential skills of tailoring, harmo-
nization, and operationalizing the published guidance. This might be the most
important chapter in the book, and I hope that you will give me your feedback
on your efforts to embrace and implement industry standards and frameworks.

Overall, I think that you want to focus on the first part of this book to under-
stand the core CM best practices and then read the remaining chapters of this
book in whatever order you choose to cover the topics that you have an immedi-
ate need for implementing within your organization.

ptg

xxx

Acknowledgments

A lot of people have helped me write this book. First, the Aiello family editing
team has been amazing. We are very much like a mom-and-pop candy store
except that we write technical journals. My assistant editors have included my
sons Shmuel and Dovid (also our webmaster); Massimo, whose ability to see
things differently helped me to perceive concepts in new and different ways
(not to mention he provided his fresh-baked pizza); my daughter Esther, whose
creativity helped us in so many ways; and my youngest princess, Devora, whose
hugs and cuddling (not to mention backrubs) always kept me focused on getting
the work done. Finally, Leslie, my lifelong partner, proved that we could be col-
leagues on multiple levels.

There are many colleagues whom I should acknowledge for sharing their ex-
pertise and experience. Leading the list would certainly be my colleagues on the
IEEE CM Planning working group, starting with our chairperson, Chuck Wal-
rad, and the members of the working group who have taught me so much about
CM (and tolerated my diatribes about how we need to write more clearly),
including Diego Pamio, Alastair Walker, Darrel Strom, Ranata Johnson, and
Mike Smith. I have also learned a great deal about standards from all of my col-
leagues and mentors on the S2ESC board, including James Moore, Carl Singer,
and David Schulz. Equally helpful were my numerous colleagues on CM Cross-
roads, including Steve Berczuk, Mario Moreira, Ben Weatherall, and of course,
Patrick Egan, with whom I have worked on the CM Journal and CM Crossroads
for so many years. The folks at Addison-Wesley were amazing, starting with
my development editor, Chris Zahn, along with Chris Guizikowski and Raina
Chrobak. Early in my career, I was privileged to work with Dr. Marianne Bays
(who believed me when I suggested that software engineering and industrial
psychology were a good mix). There are many more colleagues deserving of my ap-
preciation, and I hope that you will come to my website (http://cmbestpractices.com)
to enjoy their articles and contributions.

—Bob A iello
Bob.Aiello@ieee.org
www.linkedin.com/in/BobAiello

www.linkedin.com/in/BobAiello
http://cmbestpractices.com

ptg

About the Authors

Bob Aiello is the editor-in-chief for CM Crossroads and a consultant special-
izing in software process improvement, including software configuration and
release management. Mr. Aiello has more than 25 years of experience as a tech-
nical manager in several top NYC fi nancial services firms where he had com-
panywide responsibility for CM, often providing hands-on technical support for
enterprise source code management tools, SOX/Cobit compliance, build engi-
neering, continuous integration, and automated application deployment. Bob is
the vice chair of the IEEE 828 Standards working group (CM Planning) and is
a member of the IEEE Software and Systems Engineering Standards Committee
(S2ESC) management board. He is a longstanding member of the steering com-
mittee of the NYC Software Process Improvement Network (CitySPIN), where
he has served as the chair of the CM SIG. Mr. Aiello holds a master’s degree in
industrial psychology from NYU and a bachelor’s degree in computer science
and math from Hofstra University. You may contact Mr. Aiello at Bob.Aiello@
ieee.org or link with him at www.linkedin.com/in/bobaiello.

Leslie Sachs is the COO of Yellow Spider, Inc. (http://yellowspiderinc.com)
which specializes in providing CM-related consulting services that are aligned
with the practices described in this book. Leslie also writes about applying per-
sonality to technology endeavors in her column titled Personality Matters. A
New York State Certifi ed School Psychologist with more than 20 years of ex-
perience, Ms. Sachs has worked in a variety of clinical and business settings
where she has provided many effective interventions designed to improve the
social and educational functioning of both individuals and groups. Ms. Sachs
has a Masters of Science degree in school and community psychology from Pace
University and interned in Bellevue Hospital’s famed Psychiatric Center in NYC.
A fi rm believer in the uniqueness of every individual, she has recently done ad-
vanced training with Mel Levine’s All Kinds of Minds Institute. She may be
reached at LeslieASachs@gmail.com, or you can link with her at www.linkedin.
com/in/lesliesachs.

xxxi

www.linkedin.com/in/bobaiello
http://yellowspiderinc.com
www.linkedin.com/in/lesliesachs
www.linkedin.com/in/lesliesachs

ptg

This page intentionally left blank

ptg

Introduction

In this Introduction, I briefly introduce confi guration management (CM) and
some basic information on how you might approach implementing CM best
practices. It is common for organizations to focus on implementing only a very
narrow functional area to address a specific goal or problem. In practice, this
might be a perfectly fi ne thing to do, but it is also important to understand how
each functional area of CM impacts the other. It has been my personal experi-
ence that CM consists of six functional areas, which I will describe below and
throughout this book. Implementing good CM is not easy and requires a con-
siderable amount of hard work. This introduction will help us start our journey.

 Configuration Management Consists of Six Functional
Areas

The six core functional areas of CM are as follows:

1. Source code management

2. Build engineering

3. Environment configuration

4. Change control

5. Release engineering

6. Deployment

Source code management involves the control of every piece of computer
code, including source, configuration files, binaries, and all compile and runtime
dependencies. We usually refer to all these artifacts as configuration items (CIs). 1

The main goal of source code management is to effectively safeguard all
the project resources. I always called this locking down the code. Source code

xxxiii

1 Please don’t be confused by the fact that we will refer to continuous integration (CI)
with the same acronym.

ptg

 Introductionxxxxxxxxxiiivvv

management also involves creating a permanent record of specific milestones in
the development process. This is known as baselining your code, and it is a criti-
cal CM function. Source code management also involves creating code variants
to successfully manage parallel development, bugfixes, and globally distributed
development. We discuss how to assess your source code management require-
ments and plan interventions to improve your source code management prac-
tices. We also look at how source code management is often overengineered,
resulting in unnecessary complexity and automation that does not work reliably.

Build engineering involves the selection of a specific variant in the code (e.g.,
baseline) to reliably compile, link, and package code components. Build engi-
neering adds value by providing a repeatable process and the management of
(often complex) compile dependencies. We discuss how to implement effective
build engineering to help improve your team’s development process. We also
discuss the value of continuous integration (CI) versus the (usually) less-rigorous
nightly build.

Environment confi guration involves managing the compile and runtime de-
pendencies that can often change as code is promoted from development to test
to production. Environment configuration also involves managing the environ-
ments themselves often designated as development, test, integration and produc-
tion.

There are different types of change control. The most commonly implement-
ed change control practice is essentially a “gatekeeping” function that prevents
unauthorized releases from being promoted into production (or QA for that
matter). There is also a priori change control, whereby intended changes, to the
code, are reviewed (before they are made) and permission granted (or denied)
to make the proposed changes. We discuss when a priori change control is com-
monly used and when it is instead left to the project or development manager
as an implicit task. We also discuss the other types of change control that are
commonly seen in organizations. In all, I defi ne seven different types of change
control. I also describe how they are commonly used in practice.

Release engineering involves the packaging and identification of all the com-
ponents built in the build engineering function. This is somewhat different in a
corporate IT function versus a software vendor. We initially focus on corporate
release management in a corporate IT environment, and then discuss how this
differs slightly for a software vendor (e.g., deploying packaged releases to cus-
tomers). Deployment involves the staging and promotion of packaged releases
and, in an IT organization, is usually performed by the operations team. Deploy-
ment also involves the monitoring of the production (and QA) environments
to confi rm that there are no unauthorized changes. Deployment for a software
vendor usually refers to delivering the packaged release to a customer along with
the requirement to manage updates and patches as needed.

ptg

 Configuration Management Consists of Six Functional Areas xxxv

All of these functions are part of a comprehensive discipline that is known

as confi guration management (CM). Software configuration management is a
specialization of CM. Equally important and frequently overlooked is hardware
CM, which we discuss in Chapter 8, “Hardware Confi guration Management.”

Understanding the Linkages

The six functional areas of confi guration management impact each other in
many ways. Build engineering is almost impossible to do well without effective
source code management practices. Release management just won’t happen if
your releases are not built correctly, especially in terms of identifying all con-
figuration items, as we describe in Chapter 2, “Build Engineering.” Environment
confi guration impacts build engineering, release management, and deployment.
Of course, deployment is almost impossible if the releases are not packaged cor-
rectly. All of these functional areas are impacted by change control best prac-
tices. For example, an effective change control board (CCB) will review the
CM plan and release management automation before giving permission for the
release to be approved. We discuss change control best practices in Chapter 4,
“Change Control,” including after-action reviews to ascertain whether mistakes
could be avoided by improving any of these confi guration management best
practices.

The Traditional View of Configuration Management

My colleagues rightly remind me that confi guration management is defined as
follows:

● Confi guration identifi cation

● Change control

● Status accounting

●

Confi guration audit

They are absolutely correct, and I am not changing the substance of con-
fi guration management, but I believe that the terminology used in traditional
CM is less than clear and, in this book, I seek to make the terminology that
describes configuration management compelling. Generally, I jab back by chal-
lenging them to give me a clear and sensible defi nition for status accounting. In
my opinion, the terms confi guration identification and confi guration audits are
not much more intuitive. On the other hand, most developers have a basic idea

ptg

 Introductionxxxvi

of what’s involved with source code management, build engineering, and release
management. Let’s bridge the gap with the traditional terminology and then
dive deeper into CM.

Confi guration identification refers to providing a specific and unique identity
to each artifact for the purposes of tracking confi guration items (e.g., source
code, binaries, documents, config files). I have an entire chapter on change con-
trol, which I define as being composed of seven functions. Status accounting (my
least favorite term) refers to tracking the status of a configuration item through-
out its lifecycle. Configuration audits refer to being able to inspect and identify
the exact version of any configuration item. In my opinion, CM experts need to
make this terminology easier to understand and use on a day-to-day basis.

For example, confi guration identifi cation is actually accomplished by nam-
ing the components, streams, and subdirectories (folders) in your source code
management tool in a logical and intuitive way. Build engineering best practices
enable you to embed version IDs in binary configuration items (it also facilitates
confi guration audits), and many build tools, such as Maven, help you to organ-
ize your code in a logical and sensible way. Release management also involves
confi guration identification in that you must name your release packages in a
clear and consistent way.

Status accounting involves tracking the status of a configuration item through-
out its lifecycle. In practice, many source code management solutions are inte-
grated with requirements and defect tracking systems (if not already built in)
so that you can easily trace the evolution of a component from its requirement
(or perhaps defect record) all the way through to its deployment. Configuration
audit mean that you know exactly which version of the code is running in pro-
duction (or QA). Unfortunately, many technology professionals cannot identify
the exact version of a binary configuration item after the code leaves the source
code management tool. In my world, you need to be able to tell me the exact
version of the code that is running in production (or QA) and be able to retrieve
the exact version of the source code used to build it so that you can also create
a sandbox (in a source code management tool) and make a small change to the
code—without any chance of the code regressing due to the wrong version of a
header fi le or other dependency. If you can’t do that today, you have come to
the right place!

The fi rst six chapters of the book make up Part I, “The Core CM Best Prac-
tices Framework,” which describes the core functions in confi guration manage-
ment. I describe how the six core functions relate to the traditional view of CM.
I also cover a number of other essential topics in Chapters 7 through 14, which
are presented in Parts II through IV. Here is a description of these sections.

The second part of the book, Part II, “Architecture and Hardware CM,”
deals with understanding the impact of architecture on CM best practices and

ptg

The Goals of Good CM xxxvii

the impact of CM on architecture itself. In Chapter 8, we discuss hardware CM,
which should really be a book on its own.

Part III, “The People Side of CM,” covers the essential “people” issues that
you need to understand to be effective in implementing CM best practices. Many
process improvement efforts fail because these issues are often overlooked. The
chapters in this section are as follows:

● Chapter 9, “Rightsizing Your Processes”

● Chapter 10, “Overcoming Resistance to Change”

● Chapter 11, “Personality and CM: A Psychologist Looks at the Workplace”

● Chapter 12, “Learning From Mistakes That I Have Made”

Part IV, “Compliance, Standards, and Frameworks,” is the last section of this
book and covers establishing IT controls and issues related to compliance, with
Chapter 14 explaining the standards and frameworks that are essential for you
to know to establish CM best practices:

● Chapter 13, “Establishing IT Controls and Compliance”

● Chapter 14, “Industry Standards and Frameworks”

The Goals of Good CM

I believe that there are three basic goals that any CM effort must accomplish.
The fi rst is that all code that has been deployed to production (or QA) must be
easily identifi able. In CM terminology, we call this a confi guration audit. That
means that you can easily confi rm that you know the exact versions of all con-
fi guration items in production (with absolute certainty). The second goal is that
you can retrieve the exact version of all source code (and other confi guration
items) used to create that release (without having to resort to “heroic” efforts).
Finally, you must be able to create a workspace (often called a sandbox) to make
a small “bugfi x” without any chance of the code regressing due to the wrong
version of a header file (or other dependency). If you can’t do these three things,
your CM practices need some improvement. The good news is that we describe
exactly how to accomplish these goals in practical and realistic terms.

ptg

This page intentionally left blank

ptg

P A R T I

The Core CM Best
Practices Framework

ptg

This page intentionally left blank

ptg

Chapter 1

Source Code Management

Chapter Overview

1.1 Why Is Source Code Management Important? 6

1.2 Where Do I Start? 7

1.3 Source Code Management Core Concepts 9

1.4 Defect and Requirements Tracking 16

1.5 Managing the Globally Distributed Development Team 17

1.6 Tools Selection 19

1.7 Recognizing the Cost of Quality (and Total Cost of
Ownership) 23

1.8 Training 24

1.9 Defi ning the Usage Model 25

1.10 Time to Implement and Risks to Success 26

1.11 Establishing Your Support Process 26

1.12 Advanced Features and Empowering Your Users 27

Source code management is the discipline of safeguarding all the artifacts that
are created to develop your system. Source code management is a key func-
tion in confi guration management (CM) and directly impacts the productivity
of your team and the quality of the product being developed. Unfortunately,
many organizations overlook the importance of establishing an effective source
code management function to implement and support source code management

3

ptg

Chapter 1 Source Code Management444

tools and processes. You do not want to make this mistake, and in this chapter,
I help you get started in the right direction with source code management. I have
enjoyed having companywide responsibility for source code management in sev-
eral large globally distributed organizations. This meant that I had to guarantee
that the fi rm never lost any source code once it was part of a release to produc-
tion (or even QA). Source code management needs to be approached in a flexible
and creative way. One size does not necessarily fit all, and I have often imple-
mented source code management differently for some development teams than
others. But I always focused on meeting the same essential goals as discussed
below. I would also say that source code management provides the foundation
for the other disciplines of configuration management, especially build engineer-
ing, release management, and deployment.

This chapter provides an overview of the many aspects of source code man-
agement, including goals, principles, and essential concepts that you need to
understand. It will serve to give you a framework from which to understand the
rest of the chapters, because, most of the other CM-related functions, including
build engineering, release management, and deployment, use the source code
repository as a basis for their work. I provide a number of examples from my
own experience (and the experiences of my colleagues), and then I discuss where
to start with implementing source code management, including winning sup-
port from senior management. Next, we focus on the core concepts necessary
to understand source code management, starting with baselines and creating
your own CM “time machine.” Tightly coupled with source code management
is defect and requirements tracking, which usually needs to be integrated with
the source code management tools and processes. Next, we discuss globally
distributed development, which is made possible by source code management.
Whether you have a large or small team, you need to consider which tools are
appropriate to support your organization. I give you some general guidelines
on how to pick the right source code management tool along with guidance on
extending your tools through APIs, along with a word of caution about over-
engineering your source code management solution. You also need to recognize
that quality may be “free,” but you still have to fund it, and you must especially
consider your training needs. Closely related is defining a usage model that fi ts
your requirements. Next, we discuss how to evaluate risks to the successful
implementation of source code management and how to establish a source code
management support process. Finally, I share some thoughts on handling your
power users. (Hint: Deputize them and cheer them on!)

ptg

Goals of Source Code Management 5

Terminology and Source Code Management

In an early draft of this book, I used the acronym SCM to refer to source code
management and, alternatively, software configuration management. 1

The terms source code management and software configuration management
(SCM) are obviously not the same because the latter includes much more than the
management of source code. Nonetheless, I need to be able to write about source
code management in a clear and consistent way without making the material overly
dry and boring. Some of my real-life stories about stopping the world economy
(with the wrong version of a shell script) and release management for life support
systems should help. But for the sake of readability, I refer to source code manage-
ment as the management of source code or just code management. I hesitate to use
the term version control in this context because version control has traditionally
been used to describe source code repositories that had limited functionality. I usual-
ly think of the older CVS, RCS, and SCCS when discussing version control. Today’s
robust source code management solutions have full process automation, extensive
metadata, and powerful variant management using complex branching/streams. So,
I refer to source code management as management of source code or just simply
code management in an effort to make this essential material as readable as possible.

Goals of Source Code Management

Good source code management starts with making certain that all of your source
code is safely locked down and no important source code (or any other configu-
ration item) is lost. That sounds fairly simple, but many of us recall the massive
Y2K efforts that uncovered a remarkable number of critical systems that had been
running in production for years without anyone knowing where the source code
was located. In some cases, we went searching for the correct version of Cobol
copybooks; in other cases, we had to rewrite the entire system from scratch (which
was often the right choice anyway). My goal in implementing good source code
management is to absolutely guarantee that source code can never be lost.

Another important goal of effective code management is to help improve the
productivity of your entire team. Effective source code management means that
you can manage more than one line of code development at the same time. It
also means that you can improve the quality of your code in many ways, includ-
ing helping to implement automated testing on both a unit and systems level.
This may include building variants of the code to support the use of test tools
and instrumenting the code for performance testing, code analysis (e.g. static,
dynamic, etc.) or automated regression testing. One of the most important goals

1 When I teach confi guration management, I often call source code management “little
SCM” and software configuration management “big SCM.” I have similar descriptions
for CM and RM.

ptg

Chapter 1 Source Code Management6

of code management is to provide complete traceability so that you know ex-
actly who changed your code and are able to, if necessary, back out the change.

Principles of Source Code Management

The principles of source code management can be summarized as follows:

● Code is locked down and can never be lost.

● Code is baselined, marking a specific milestone or other point in time.

● Managing variants in the code should be easy with proper branching.

● Code changed on a branch (variant) can be merged back onto the main
trunk (or another variant).

● Source code management processes are repeatable, agile and lean.

● Source code management provides traceability and tracking of all changes.

● Source code management best practices help improve productivity and
quality.

1.1 Why Is Source Code Management Important?

Source code management is important because you need to have all of your as-
sets secured and available in a controlled and reliable repository. Code manage-
ment gives you the tools and processes to manage your source code and all the
resulting artifacts that make up your system. In CM terminology, we call these
things confi guration items (CIs). All development teams need to be able to iden-
tify and control confi guration items or you just won’t get the work done. Source
code management is usually the place where organizations begin their journey
to implement configuration management. Good source code management al-
lows you to handle long-term development along with quick emergency fi xes.
Agile and Lean source code management is important because it will lay the
foundation for many other related activities that rely upon effective source code
management practices. Another matter to consider is that, if you don’t have ef-
fective (repeatable) source code management processes in place, bad things can
happen, including major outages, unnecessary defects, and lots of wasted time
doing the same work over again.

ptg

1.2 Where Do I Start? 7

1.2 Where Do I Start?

The best place to get started with implementing the management of source code
is to identify your own goals and requirements for a source code management

When Bad Things Happen

My phone rings when bad things happen. I’ve realized that people don’t
call when everything is working fi ne. I am called when people need help
because they have a problem. I also frequently get called right after a huge
incident resulting in source code being lost or some other major problem.
This might just be the best part of my job, because I get to see my efforts
result in a signifi cant positive impact on the software development effort.
The fi rst step is to understand why bad things can happen. Source code is
often lost because of any of the following reasons:

● Nonexistent source code management tools and process.

● Unreliable tools have been implemented.

● Users are not trained, so even the best tools can’t help them.

● Poor to nonexistent release and deployment process.

● Complex branching leads to user error.

● Poor communication and poor teamwork.

● Too many moving parts and complexity.

●

Source code management tools are not supported by effective admin-
istrative procedures.

I have dealt with each of these problems in large-scale (global) environ-
ments. I have worked in environments where source code management
problems could result in losing millions of dollars or even catastrophic in-
cidents, like planes flying into each other. Although many of my colleagues
appreciate the value of good source code management, it is also true that
some do not. It’s common for even seasoned technology professionals to
be completely ignorant of source code management best practices. I have
worked in a number of large financial services firms where I had company-
wide responsibility for implementing source code management. Although
it’s my job to promote best practices as the CM evangelist, it is often a
challenge to get senior management to recognize and support my efforts.

ptg

Chapter 1 Source Code Management8

function. I have worked in organizations where this really had to be a major
companywide effort and other places where it was a part of their culture and
source code management pretty much ran itself. Most organizations begin this
journey by assessing their existing practices for securing their code and man-
aging changes, baselines, and releases, including bugfixes. When you conduct
your own assessment, make sure that you ask for both the existing practices
that work well along with areas that might be improved. Taking a balanced
approach will help you avoid resistance and help your team feel comfortable ex-
amining their own strengths and weaknesses. I also recommend starting with an
approach that is both agile and lean. For example, only implement just enough
process for you to get the job done without any extra steps and build in the
ability (perhaps requiring approval from an SEPG as discussed in Chapter 4,
“Change Control”) to change your processes as needed to support both quality
and productivity. Verbose rigid source code management processes may sound
nice on paper, but it has been my experience that they do not work in the real
world and everyone (including me) will do anything to get around them. Start
with only the minimum steps necessary to get the job done. You can always add
another control (such as a process step) if necessary. Whatever you identify as
an opportunity for improvement, make sure that you gain support from senior
management before you start. It has been my experience that lasting change oc-
curs both from the bottom up as well as from the top down. The first thing that
you need to know about the management of source code is how to create and
manage a baseline of your code.

Winning Support from Senior Management

I recall initiating a meeting with my fi rm’s CIO to ask for his support in
implementing a source code management support function. Many of his
direct reports were already extremely supportive of my efforts, but I want-
ed to gain his explicit and open support for improving the fi rm’s source
code management processes. This CIO called in one of his direct reports (a
senior vice president [SVP]) and asked him to describe his division’s cur-
rent source code management practices. The SVP admitted that his team
just stored their code in networked drives (some of which turned out to not
even be regularly backed up). The SVP was the least CM savvy manager in
the firm (which I realized later was exactly why the CIO had called him in).
The SVP was then assigned to be my new manager and given the direction
that “all the fi rm’s assets had to be safeguarded.” It was funny watching
my new boss transform into a strong advocate for CM best practices. He
was soon walking around the offi ce saying, “Don’t even think of telling
me that you did not check in your code!” He also interfaced with other
senior technology managers to make sure that I had their full cooperation.

ptg

1.3 Source Code Management Core Concepts 9

1.3 Source Code Management Core Concepts

Source code management has its own terminology just like any other discipline.
If you have been baffl ed by the techno-babble coming from your CM gurus, you
have come to the right place, because we will get you up to speed with the core
concepts required to understand today’s source code management best practices.

1.3.1 Creating Baselines and Time Machines

Many developers think source code management just means you “check in” and
“check out” your code using a source code management tool (a repository) that
acts like a virtual library. That indeed is what most people think with some of
the older version control systems (VCS) that were commonly used years ago.
Today, most CM repositories do safeguard all of your changes with varying
levels of reliability and functionality. Although simply checking your code into
a source code management tool is indeed necessary, it would certainly not be
suffi cient as a CM process. The whole point of implementing effective source
code management is to provide a virtual time machine that can always bring you
back to a specific point in time when a particular slice of the code was a stable
release. Identifying the exact versions of the code for a specific release is known
as creating a baseline of the code. I have seen some authoritative resources that
call this a confi guration of the code. I respectfully disagree with using this par-
ticular term because it is misleading and, moreover, there is a much better usage
of the term confi guration, which we discuss in Chapter 3, “Environment Con-
fi guration.”

Many CM tools call the operation of creating a baseline tagging or labeling
the code. I have also seen some tools that used the term snapshotting the code
when referring to multiple components that are interdependent. Baselines need
to be immutable. That means you must have the capability to lock your tag or
label down so it cannot be altered. This is important because you must always
have a permanent record of the versions of the code that you used to build the
release deployed to production (or QA). In addition to the tag (or label) for
creating baselines, many people use an additional tag (often just called “PRO-
DUCTION”) to indicate the current release in production or perhaps the last

Without support from senior management, your journey will be very
diffi cult and most likely derailed before you even get started.

We describe strategies for winning support from the top down and the
bottom up in Chapter 10, “Overcoming Resistance to Change.”

ptg

Chapter 1 Source Code Management10

good build. This tag is said to “fl oat” with the current baseline of the code that
is in production. This is a common (and convenient) practice, but it should
never take the place of creating an immutable baseline to identify the code that
has been released to production (or QA). Most good source code management
tools implement tagging or labeling as metadata. Metadata is data about data.
That means the source code management repository keeps a separate database
of information about the code that you have checked into the repository. Meta-
data can include check-in comments, references to related defects (that triggered
change to the code), and links documenting code merges. In fact, all changes to
code should be tracked to a change request (CR) so that you know exactly why
a particular change was made. Many source code management tools using meta-
data provide a rich set of features that provide the user with the history of all the
changes to the code since the repository was created (often many years later). It
is common to handle tracking changes with a “light” (and informal) process in
the beginning of the development effort and then get increasingly strict as the
application becomes ready for release, and of course, has to be maintained. This
is a good example of applying Agile and Lean principles to CM. We discuss right
sizing your processes in Chapter 9, “Rightsizing Your Processes.” Some source
code management tools use branches to create baselines, but that may not be the
most optimal approach because code on branches is usually modifiable (unless
you have some mechanism to “lock” the branch). The tools that use branches
for baselining code usually do so because of performance limitations in the tool
(branches take less time than tagging or labeling in these tools). Although some
CM tools do try to use branches for baselining, that is not the most common
usage of branches, which we discuss later in this chapter. First, we need to un-
derstand the “check-in”/“check-out” paradigm in source code management.

1.3.2 Reserved Versus Unreserved Checkouts

Some source code management solutions are based on a reserved checkout
model. By default, the repository places a lock on the version of the fi le in the
repository when the developer checks out the fi le for modifi cation. Other source
code management tools work based on an unreserved checkout model (some-
times called an optimistic checkout model). This means no lock is placed on the
fi le, regardless of how many developers simultaneously check out and modify
the code. I prefer using reserved checkout models because they proactively let
me know whether I am trying to work on the same file as someone else. Opti-
mistic checkout models might result in extra work in the form of merges that
would have been avoided if the developers knew they were trying to change the
same fi le at the same time. (Some newer source code management tools give you
other ways to avoid this problem by providing more visibility into who else might
be trying to change the same piece of code as you.) Another use of an unreserved

ptg

1.3 Source Code Management Core Concepts 11

 checkout is to simply get a writeable copy of the file (that might never be checked
back into the repository).

1.3.3 Sandboxes and Workspaces

Most source code management tools have a concept of a private sandbox or work-
space. With a private sandbox, you can work in isolation and then check in your
changes and, if necessary, merge your changes back onto a branch (often used just
for code integration). It is a common practice for developers to have more than
one workspace (or sandbox) to facilitate organizing work. Branching provides an
effective way to organize work and improve programmer productivity.

My First Sandbox

When I am teaching CM and how to use source code management tools, I
usually mention my fi rst experiences playing in a sandbox as a child. Like
lots of other boys, I liked to play with cowboys, army soldiers, and other
action fi gures. My next-door neighbor was a young girl who would some-
times come over and play with her dolls in my sandbox. Inevitably, one of
my cowboys would throw some sand around, and Suzy would run home
complaining about the sand that I got on her doll (and of course, I would
get into real trouble after that). I relate this humorous (and true) anecdote
to illustrate that you should never let anyone else into your private sand-
box—or else you will run into problems. Working in controlled isolation is
one of the key features that helps improve productivity in software devel-
opment. Another thing that improves productivity is well defined methods
for handling variants in your code (such as bugfixes).

1.3.4 Variant Management (Branching)

One of the most important features of good source code management is the abil-
ity to make it easy to support multiple variants of the same codebase. You can
easily support the same source code with a subset of the code being changed for
a particular purpose. Creating variants in the code is often done through creat-
ing parallel lines of development, usually called branches. There can be many
reasons for creating branches.

For example, you might have written some software to display an interna-
tional clock. The basic functions of the clock are the same regardless of whether
you are running the product on a Windows, Mac, Linux, or UNIX machine.
But, for the clock to work, there might be a function that reads the (low-level)

ptg

Chapter 1 Source Code Management12

operating system clock. Therefore, one particular module is coded with operat-
ing systems calls that are customized for each operating system.

In practice, most of your common code would be on the main branch (often
called the trunk/main), which, for this example, we will assume is on Linux.
Then, you would create variants in the code (for example, Windows, Mac, and
UNIX branches) that all include the same code (that is on the main branch)
plus just the changes (for example, an operating system call to the system clock)
needed for that variant. In this example, illustrated in Figure 1.1, the only code
on each branch that is different is the system clock lookup function. In this way,
you can effectively manage different variants in the code.

Windows

1

Mac

Solaris

2

Figure 1.1 The hello.c program is initially written for Linux. The program is then
modifi ed on OS-specific branches. Each is called a variant in the code (from the original
Linux version).

1.3.5 Copybranches Versus Deltas

Some source code management tools require all branches have a duplicate copy
of every piece of code that was on the main branch (for example, trunk). This
is known as creating a copybranch, as illustrated in Figure 1.2. Other tools use
a sub-branch that holds only the code that has changed (usually called a delta).
The sub-branch sits in front of the main branch. Branching can get a bit com-
plicated, especially when people start using branches to manage every aspect of
the development effort. One common practice is to use a sub-branch just to hold
the changes related to fixing a bug. This is sometimes called feature branching.

 1.3.6 How to Handle Bugfixes

Supporting bugfi xes is also a common reason for branching. For example, sup-
pose you are working on my favorite “Hello World” program, and you decide

ptg

1.3 Source Code Management Core Concepts 13

to also display a nice clock on the screen. (Think of this as including an extra
feature that was not required for this release.) A few days after your code is sent
to customers, you discover a bug whereby the time is wrong every third Tuesday
of the month. We illustrate this scenario in Figure 1.3. Although a clock was
never a requirement for this release, you cannot have a clock on the screen that
is wrong!

By revision 2, we release the
first version of our code only to
find out that we had a bug in

the clock.

1

2

3

Figure 1.3 In version 3, we started new work that won’t be ready for months. So, how
do we fi x the bug?

The rest of the program works just fine, so we have been asked to simply hide
the clock so that customers never see the wrong time. (In the next major release
of the product, we will have a completely different console that will include a
brand new digital clock, so we just need a quick bugfi x to hide the defective
clock.) The problem is that we have already made more changes (in version 3)
as part of the next release that is due in two months. In the meantime, we need
to create a bugfix, as illustrated in Figure 1.4, that just includes the code for this
temporary fix.

In a “copybranch,” version 2.0 is identical to
the original version—and then changes are
made on the 2.0 branch (resulting in 2.1).

1

2 2.0

2.1

Figure 1.2 Copybranches are a common way to organize variants in the code.

ptg

Chapter 1 Source Code Management14

We create a branch and
then make a small change

that hides the defective clock!

1

2

3

2.0

2.1

Figure 1.4 The bugfi x on 2.1 provides a quick patch (hiding the defective clock) to
solve the immediate problem.

1.3.7 Streams

Streams are another powerful way to manage variants in the code. Although
similar to branches, streams often have powerful features that help to organize
variants in the code. Here is a list of some of these features:

● Clear usage paradigm to model software and system architecture

● Hierarchical organization that is clear and intuitive

● Ability to control and fl ow changesets between streams (sometimes via the
workspace)

● Snapshots create baseline of the code

● Ability to load a particular baseline of a component

● Ability to load a particular snapshot (such as baselines of one or more
components)

● Strong security authorization and entitlements

● Visual diagram of stream topology helps with design and usage

● Complete history to facilitate traceability

For example, some source code management tools enable streams to be or-
ganized in a hierarchical way, which means you can have a parent stream (often
used for integration) and child development streams. I know of one source code
management tool that allows you to dynamically “reparent” a child stream. This
useful feature allows you to work on components that are intended to interface
with other components (that are not yet complete). You would create some
code stubs (sometimes called “mocks”) and put them into a temporary stream

ptg

1.3 Source Code Management Core Concepts 15

and then reparent your stream once the code has actually been implemented.
Changes are promoted (sometimes called delivered) from the child stream to its
parent. It is common for the child stream to first be refreshed (sometimes called
rebasing) with the latest changes from the parent, before delivering a specifi c
set of changes (sometimes called a changeset) up to the parent stream. It is a
common best practice to rebase your private workspace, test to make sure that
you can successfully build, and then deliver your changes to the parent stream.
Streams usually have the concept of fl ow targets so that changesets can be cop-
ied (often promoted) from one stream to another. This is common when you
have development streams that then feed an integration stream. It is common
for the release management (RM) team to have its own streams that are secured
so that the RMs can independently build, package, and release the code for de-
ployment (often by the operations team). Without streams, you would typically
have the extra work of integrating your source code management tool with a
defect or change request tracking system to organize your branches, especially if
you are trying to implement one feature per branch. In practice, streams offer a
lot more functionality than branching. Streams can be complicated, but they are
powerful and well worth the effort to learn and understand their usage.

1.3.8 Merging

Branching is a powerful feature that many developers find helps them do their
work more effi ciently. The problem that I have often seen is that developers
forget that code that has been branched often needs to be merged back onto
the main branch. For example, if you fi x a bug on a branch, you probably also
want that fix back on the main trunk (assuming it is relevant). Merging from a
branch back to the main trunk is usually called an inner merge, as illustrated in
Figure 1.5.

1

2

3

4

2.0 Code is merged from
the branch to the trunk.

2.1

Figure 1.5 Example of an inner merge.

ptg

Chapter 1 Source Code Management16

There are times when you want to merge code from the trunk back out to
the bugfi x branch. This is usually called an outer merge, and is illustrated in
Figure 1.6.

1

2

3

2.0

3

Code is merged from
the trunk to the branch.

2.1

Figure 1.6 Example of an outer merge.

1.3.9 Changesets

Changesets are a convenient way to group one or more modifi cations to the
codebase. Most source code management tools that support changesets enable
you to apply or back out changesets as needed. Checking in a changeset (usually
called committing) is usually an atomic transaction, which means that the entire
set of changes gets successfully committed (or completely backed out if some-
thing goes wrong). I appreciate the value of changesets because I remember long
evenings when trying to check in a thousand files that stopped halfway through
the check-in. It was very painful and error prone to track down which fi les had
been successfully checked in and which ones had to be reattempted again. Some
source code management tools also provide the capability to manage the entire
repository itself in terms of changesets, which makes it much easier to handle
backing out a mistake if it happens. It’s common to associate a changeset with
either a defect or requirement, and we discuss how to do that in the next section.

1.4 Defect and Requirements Tracking

Tracking defects and requirements to changesets is a key feature that provides
traceability into why a specifi c change was made (or to ascertain that a desired
change was inadvertently missed). We discuss the importance of traceability
in Chapter 13, “Establishing IT Controls and Compliance.” Some CM tools

ptg

1.5 Managing the Globally Distributed Development Team 17

have integrated defect or requirements tracking. Others require some additional
programming to integrate with external tools via an application programming
interface (API). Interfacing via an API should be a last resort because it can be a
lot of work and it can also get very complicated. In practice, I have seen scripts
and extensions written in APIs have many unexpected (and painful) problems,
including timing issues and unexplained side effects. Overall, you never want to
overengineer your source code management solution or process.

Training Is the Hill to Die On

Training is critical and, unfortunately, often forgotten or abbreviated.
That is a huge mistake. You need to have training that explains not only
how the tools work, but also presents the process and usage model that
you want your team to adopt. That means that you not only want vendor
training, but someone on your team should have the responsibility for
designing and documenting the process for using the tool (often called a
usage model) in your organization. Expect that this will be an iterative
process and that you will not have a perfect solution when you fi rst get
started. Even if you don’t pick the best tool on the market, training will
make the difference between success and failure.

1.5 Managing the Globally Distributed Development Team

Source code management helps to coordinate the work being done by teams
that are globally distributed. If you have teams in London, New York City, and
Mumbai (see Figure 1.7), source code management best practices will help you
coordinate everyone’s work in a meaningful and logical way.

The challenge of global software development is that work has to be coordi-
nated and changes controlled across geographically distributed work environ-
ments. Although this is not easy when developers sit across from one another
in the same room, it is even more diffi cult when the team is separated in differ-
ent countries, working in different time zones, each with their own respective
languages, cultures, and expectations. Source code management can help by
organizing the work on separate branches so that the work in one location can
be reviewed and then merged onto the trunk in a controlled and traceable way.
I have implemented this by having an offshore branch that was reviewed by on-
shore resources and then merged to the trunk (with the results replicated back
out to the offshore team). Another approach is to allow offshore resources to
have equal repository access, as if they were working in the onshore location. It
is a common best practice to communicate and track changes through the use

ptg

Chapter 1 Source Code Management18

of change requests (CRs), which I have seen called workitems, tasks, enhance-
ments, or defects (as in a bugfi x). Each of these may have their own lifecycle to
establish and enforce effective code control processes. Good source code man-
agement practices allow you to establish the right controls and process for your
team and reliably control offshore development. I recommend piloting and try-
ing one or more approaches to see what best fits your organization. You should
expect them to change and mature over time as you calibrate your source code
management so that you have just enough process to get the job done effectively.

Figure 1.7 Source code management helps to coordinate the efforts of a team literally
spread all over the world.

The right strategy includes good coordination, traceability, and visibility.

ptg

1.6 Tools Selection 19

1.6 Tools Selection

Tools selection is a critical task in the implementation of any source code man-
agement solution. Numerous factors need to be considered when selecting a
source code management tool. I decided to cover this topic only in general terms
in this chapter and, instead, include a tools selection section on the website that
supports this book (www.cmbestpractices.com/tools). This way, I can keep the
material up-to-date and allow my colleagues to give their input regarding what
often turns into a heated “religious” debate.

Let’s start with the observation that there are an amazing number of excel-
lent source code management tools on the market. We all owe a huge debt of
gratitude to the many vendors who have developed excellent source code man-
agement solutions in both the commercial and open source world. It has been
my experience that tools vendors deserve credit for developing and spreading
effective best practices that go beyond just the short-term goal of selling their
own products. I would also say that even the “bad” tools have their place in
specifi c circumstances. The important thing is to start by assessing your own
requirements for a source code management solution and then evaluate which
solutions would best match the work being done by your team in an open and
pragmatic way. All source code management tools are not the same, and there
are good reasons why some tools may be better or worse for a particular project.
Some have limited features and integrations. Others have a steep learning curve
but tremendous power once the users are fully trained and supported.

The biggest problem is that many commonly used source code management
tools lack the capability to test and control the internal integrity of the reposi-
tory itself. For example, I have seen code literally disappear from some (well-
known) source code management tools without any trace of how and when the
revisions were lost. I have had personal experience in dealing with this problem
in large-scale fi nancial services environments where code loss could literally re-
sult in a material loss to the fi rm. I have seen both open source tools and some
commercial tools (from large well-known vendors) have these and similar prob-
lems. Therefore, keeping your trading system code in one of these tools may not
be an adequate way to lock down your source. (At best, you need to keep extra
backups of the source used to build the release.)

Here are some of the features that you should consider when selecting a
source code management solution:

● Ease of use (versus learning curve)

● Branching capabilities

● Merging (graphical and command line)

www.cmbestpractices.com/tools

ptg

Chapter 1 Source Code Management20

● History of changes

● Baselining (such as tagging/labeling)

● Changesets

● Administration tools (such as checking for repository integrity)

● Costs (including total cost of ownership)

● Available training and support

● Integration with common IDEs

● Defect and requirements tracking

● Full ALM solution (versus integration with third-party tools)

● Well-defi ned usage model

● Open source versus commercial

● Product maturity

● Vendor commitment

● Extensibility and open API

●

Time to implement and risks to success

It is important to start by defining your goals for selecting an effective CM
solution. Then, you can evaluate these and other criteria for selecting the right
source code management solution for your efforts. Sometimes, you can rule out
a particular tool based on one or more criteria.

For example, many fi rms have large development teams (say, hundreds to
thousands) globally distributed throughout the United States, Europe, and Asia.
Source code management tools really show their value in these situations be-
cause they help safeguard the code, organize the development effort, and pro-
vide visibility into what the team is doing on a daily basis. There are times when
teams really want the advanced features offered by the more powerful tools, and
then they must also plan on providing training and support. In some organiza-
tions, there is an absolute requirement to support multiple variants of the same
codebase, which means that the tool must have the capability to support com-
plex branching (and merging).

Most organizations really need to be able to easily view the history of all
changes (which can quickly become complicated). All development teams must
have the ability to baseline their code (which is a basic requirement) in any
organization that must maintain proper IT controls and compliance. I would

ptg

1.6 Tools Selection 21

have a hard time finding any environment more complicated than doing my
homework for a graduate class in computer science that does not require reli-
able baselining. (Actually, I used a source code management tool for that, too.)
For example, changesets are very useful if you want to be able to have a defined
set of changes that can be easily applied or rolled back as desired, even if this
just impacts your ability to get your homework assignments completed on time.
Many organizations also have a strong view on whether the tool is supported by
a reliable vendor or supported by the community as part of open source.

1.6.1 Open Source Versus Commercial

You should consider whether your organization has a strong preference for open
source or commercial CM tools. There are pros and cons to each type. Some
developers believe that open source tools are better because the source code
is readily available and extended by an active user community. Advocates of
commercial tools usually indicate that the support and features are better when
there is a large development team getting paid to develop the tool (often with
support from a world-class technology organization). A new hybrid approach
is emerging with commercial tools vendors that are willing to post their source
code for anyone to see and even extend with contributed code (along with well-
defi ned APIs). Yet another popular approach is to provide a free (or unlimited
evaluation) copy of the product that may be limited in terms of features and/or
the number of licenses. Choosing between commercial and open source source
code management solutions is an interesting (and active) discussion with many
valid points on both sides of the argument. Again, I defer giving my own opinion
here, and continue the dialogue on the website that supports this book (www.
cmbestpractices.com/tools). Nonetheless, consider whether your organization
has a strong preference for open source or commercial tools and whether this
issue should be part of your sales selection criteria.

1.6.2 Product Maturity and Vendor Commitment

I have worked with very mature products that were not likely to get much in
the way of improvements anytime soon (both open source and commercial). I
have also worked with bleeding-edge technologies that were too new to even
have a well-defined checklist for installing them. This latter case meant that I
had to work with the senior engineers to install and configure the tools. Mature
products may have fewer problems and issues, but they also often have fewer
advanced features that can dramatically improve programmer productivity. You
need to consider your tolerance (and desire) for living life on the wild side versus
keeping your source code management adventures down to a reasonable level.

www.cmbestpractices.com/tools
www.cmbestpractices.com/tools

ptg

Chapter 1 Source Code Management22

If you are going to go with the latest and greatest source code management tool-
set, you must confirm that the vendor is ready, able, and willing to give you the
support that you need to maintain your leading edge source code management
solution.

1.6.3 Extensibility and Open API

I always warn my colleagues to go slowly when deciding to extend or modify a
source code management tool (usually through an open API or shell scripting).
Although scripting (such as triggers) may help you reinforce process, you must
also consider the time and effort necessary to adequately support your custom-
ized version of the tool. I have seen many efforts to write scripts and wrappers
around source code management tools fail miserably. It is usually better to work
with the vendor to come up with a solution and then share it with the entire user
community. You may not recognize your script when it finally comes back to
you, but it will likely be a lot more reliable after others have given their input
and suggestions. If you are the only person who knows how your scripts work,
that is bad for both you and your company.

1.6.4 Don’t Overengineer Your Source Code Management

One of the biggest mistakes that I have seen made by well-intentioned develop-
ers is overengineering the source code management tool. Source code manage-
ment tools have a lot of cool features, and I have seen many technology profes-
sionals get excited once things started working, and then they tried to automate
everything possible. Sometimes, this resulted in a source code management solu-
tion that actually had too many “bells and whistles,” which frequently broke
(usually when my colleague was on vacation). Adding process automation to
a source code management tool is an excellent idea, but this is definitely one
case where you want to have “ just enough” automation to get the job done and
nothing more. Your source code management solution should embody both the
principles of Agile and Lean in order to achieve the best results.

For example, creating a branch to support a bugfix is a great idea, but requir-
ing a separate branch for every single bug may turn out to add just too much
complexity. There are no hard-and-fast rules in this space, but I recommend
that you try to keep your processes lean and only automate what is absolutely
necessary.

Another mistake that I have frequently seen is people writing scripts to sit
in front of the source code management tool’s own command language. The
problem with this approach is that users typically do not know what the tool is
doing because the scripts are hiding the functionality and often substituted for
actual training and clear procedures. If you choose to write a script to automate

ptg

1.7 Recognizing the Cost of Quality (and Total Cost of Ownership) 23

the source code management tool, I strongly recommend that your script clearly
show each command that is being executed so that you do not hide the actual
operations of the source code management tool. This makes the script transpar-
ent and facilitates training. I believe that training is the most critical success
factor for any successful source code management tools implementation and
that scripts should only automate repetitive tasks. Make sure that you provide
enough training for your team to understand how to make the best use of your
CM tools. Scripts should not be a substitute for training, and they should not
hide the functionality of the tool. When scripts hide the functionality of the
tool, developers do not learn how to use the basic functions of the source code
management tool, and that always leads to mistakes and loss of productivity. It
is also bad because someone has to maintain and upgrade the scripts, which can
be time consuming and error prone. Picking the right tools, usage model, and
process is important. Training is even more important. It is also important to
consider all aspects of delivering quality products, including the cost of quality.

1.7 Recognizing the Cost of Quality (and Total Cost of
Ownership)

I have administrated source code management tools for a living, and it has often
been the case that senior management failed to recognize the cost of taking care
of these tools on a daily basis. Such costs include staff and resources to admin-
ister (such as backup), implement, train, and support users.

In one company, I was asked to get everyone onboard using an industry-
strength source code management tool (that the company had largely already
paid for, but which had fallen out of use). Over time, I was very successful, to
the point where I was supporting more than 700 developers using 1,500 reposi-
tories worldwide. At that time, I had only two people on my team providing
fulltime support (myself and one other person). It really became impossible to
do a good job supporting the entire organization. Other managers actually told
me that we should “go on strike” and stop trying to take care of everyone in
what was truly an impossible situation. This Wall Street financial services firm is
no longer in existence today. I believe that one of the reasons that it went out of
business was that it began focusing on short-term profi ts rather than long-term
goals. My point is that providing source code management tools and process is
a long-term strategic asset, and you need to consider the total cost of ownership
(cost of quality), including the cost to administer and support the tool. As far as
I am concerned, failing to fund the source code management effort is much like
deciding that you don’t have time to stop for gas on your drive from New York
to Los Angeles. (Sooner or later, you will realize that this short-sightedness was
a huge—read: time-consuming and inconvenient—mistake.)

ptg

Chapter 1 Source Code Management24

1.7.1 Building Your Source Code Management Budget

Make sure that you consider the cost of everything that you will need to run a
successful source code management function, including servers, disks, and pe-
ripherals to host your source code management tools, licenses for all required
products, maintenance (of the CM tools and other required products), support,
backup, and disaster recovery products and services. One area that is constantly
overlooked and underfunded is training.

1.8 Training

In selecting your source code management tool, consider whether there is struc-
tured training available from the vendor and third parties. I sometimes prefer
training that is not from the vendor because I need an unbiased approach to
understanding how to use the tool effectively (especially with regard to working
around bugs and limitations). Vendors sometimes have a tendency to teach the
classes as if they are an extension of the sales process. I was in one class where
the instructor had previously worked for the vendor and had actually written
some of the same code himself. This gentleman openly talked about mistakes
that he made when writing the code (really due to the fact that they did not
give him enough time since the priority was to be able to claim that they simply
had a certain feature available). He also said publicly that the vendor had never
allowed him to take the time to go back and improve the product once it was
being sold and in use. Vendor-provided training can be excellent. Sometimes,
third-party training is a little more objective and useful.

1.8.1 The “Bob Method” for Training

My own preferred approach is to have someone in your organization start with
vendor-provided training and then write a company-specifi c training program
that includes the desired process and preferred usage model. This approach sig-
nifi cantly lowers your cost of supporting users on a long-term basis. My way
of dealing with this issue is that I offer to give out my home phone number to
anyone who successfully takes (and completes) my class. I always offer my col-
leagues the following deal: “If I don’t do a good job of teaching you, then you
get to wake me up in the middle of the night when you can’t get your code out of
the source code management tool!” Ease of use is very close to training in terms
of its importance and impact. The good news is that many tools have features
that make them much easier to learn and use, including a powerful and intuitive
user interface.

ptg

 1.9 Defining the Usage Model 25

It has become popular to use integrated development environments (IDEs) in
many aspects of software development. Most CM tools now provide a powerful
integration with popular IDEs so that you can check out/in code from within the
IDE itself. I have seen this approach not work at all with some technologies and,
occasionally, you might find that the integration is so buggy that it is not worth
trying to use. Before you buy any source code management tool, make sure that
you try out your required IDEs to confi rm that you will be able to work effec-
tively from within the interface that you prefer. Another important requirement
is to be able to go back and see exactly what changes occurred at any particular
time. This is a feature that I have personally needed constantly as part of my
role as a person supporting and promoting CM best practices. Along with train-
ing and ease of use, you want your source code management tools to be rich in
features that facilitate traceability through requirements and defect tracking.

 1.9 Defining the Usage Model

 It is really important to get someone in your organization dedicated to defining
how your entire team will use the source code management tool. Ideally, this
person gets input from the entire team. Clearly defi ning the usage model is a
critical part of deciding which tool you should select. You can expect that this
will be an iterative process, and you can expect that there will be many differing
opinions. You might like a particular tool, but its usage model may prove to be
much too complicated (or perhaps not complicated enough in terms of desired
features). One example of a common usage paradigm is integrating the source
code management tool with a defect or requirements tracking tool to provide
traceability.

Traceability Through Requirements and Defect Tracking

I worked on an international banking system that occasionally had a silly
little problem where it would incorrectly round off by 1 Japanese yen. This
was not a lot of money and would have been merely a nuisance if not for
the fact that the Japanese Ministry of Finance would shut this bank down
if it learned of this error (because it was a violation of industry regula-
tions). So, every time the 1 yen rounding problem popped up, there was
a mad rush to immediately get this bugfi x out the door. The change was
always the same, but it seemed that no one ever remembered how we fi xed
it “last time.” If you have a requirements or defects tracking system inte-
grated with your source code management tool, all changes are associated

ptg

Chapter 1 Source Code Management26

1.10 Time to Implement and Risks to Success

Before you begin any source code management tools effort, consider whether
you have accurately considered the time and effort that it will take to imple-
ment, train, and support your team. You should also consider any possible risks
that may impede your progress toward success. For example, developers refus-
ing to participate in training is a serious risk factor that should be highlighted
before you attempt any CM tools implementation effort. You may even decide
to select an inferior tool because the better approach is riskier or requires a com-
mitment that your organization just refuses to accept and support.

1.11 Establishing Your Support Process

An essential aspect of implementing CM best practices is establishing a team to
help implement, support, and administrate the source code management func-
tion and the other fi ve functional areas that I describe in this book. I have found
that it is important to market a team’s services as a shared resource that adds
value to the entire development organization. I usually call this group “release
management services” (RMS), which, initially, puts the spotlight on releasing
the code. This is often the phase when some developers realize that they can no
longer avoid getting involved with confi guration management. Truthfully, CM
is involved with the entire application (and product) lifecycle. I have learned to
focus on running this group as a service and support function that is involved
with every phase of the application lifecycle. My team regards the developers as
“customers” and endeavors to provide effective support. The only catch here is

with a particular requirement or defect ID (also referred to as a change
request [CR]). That means that you can search your defect tracking system
for “one yen rounding” and see the exact changes that were done to fi x
this problem six months ago when we last engaged in a fi re drill to keep
our Japan-based office in business. Some source code management solu-
tions are part of a comprehensive application lifecycle management (ALM)
package, and others are just specifi c source code management tools (usu-
ally with integrations with other tools on the market). You need to decide
whether you want a complete ALM solution to support your entire SDLC
or a specifi c (sometimes called a vertical) solution to meet a particular re-
quirement. Picking the right tool is important, but defining a clear way to
use the tool is even more important.

ptg

27

Conlusion

that we also escalate to senior management if developers are not following the
RMS team’s guidelines for required configuration management best practices.
Source code management is certainly a critical function that is part of the overall
CM lifecycle.

1.12 Advanced Features and Empowering Users

I have seen many technology professionals truly take source code management
tools and processes to very high levels. Others are satisfied with just doing the
bare minimum necessary to get the job done. I am not suggesting that everyone
on your team needs to become a source code management tools guru, but you
should also recognize and empower those users who want to raise the bar. I
have learned a lot from my colleagues, and I encourage you to empower those
technology professionals who want to take CM best practices seriously and help
share what they have learned. For these colleagues, I have often offered to give
them tools admin training and encourage them to share the role of providing
support to the rest of the team. Good CM is contagious, and this is one special
contagion that you should try hard to spread and promote.

Conclusion

Source code management is a key function within CM best practices. Remem-
ber to safeguard your code and expect that your CM tools and process will
help to improve productivity and quality. Exercise all due care when selecting
your source code management tools and recognize that the source code manage-
ment function needs to be funded. Training and a well-defined usage model will
help ensure that your CM function is effective and well received. Consider your
unique requirements and risks to success along with the support process that
you will need to implement for success. I also encourage you to share your own
experiences as to what works well and any challenges that you fi nd in imple-
menting source code management. I always tell people that source code manage-
ment is a team sport, and your source code management processes will be more
effective if you have had the opportunity to learn and share CM best practices!

ptg

This page intentionally left blank

ptg

Chapter 2

Build Engineering

Chapter Overview

2.1 Why Is Build Engineering Important? 31

2.2 Where Do I Start? 32

2.3 Build Engineering Core Concepts 32

2.4 Core Considerations for Scaling the Build Function 34

2.5 Build Tools Evaluation and Selection 38

2.6 Cost of Quality and Training 42

2.7 Making a Good Build Better 42

2.8 The Role of the Build Engineer 44

2.9 Architecture Is Fundamental 46

2.10 Establishing a Build Process 47

2.11 Continuous Integration Versus the Nightly Build 47

2.12 The Future of Build Engineering 48

Build engineering is the discipline of efficiently turning source code into binary
executables. Build engineering can be as simple as running a Makefi le or Ant
script and as complicated as writing a full-build framework to support the un-
derlying technology architecture. In this chapter, we discuss tactics for dealing
with the challenges of build engineering, core skills in build engineering, and
some general approaches to selecting the right build tools. We also discuss how
to select and train people to be successful build engineers and what you need

29

ptg

Chapter 2 Build Engineering333000

to know if this is your job. I will suggest a strategy for using existing resources
when you just can’t fi nd a qualifi ed build engineer. I love build engineering and
have always found it to be among the most challenging and rewarding roles
within confi guration management.

This chapter provides a broad overview of the many aspects of build engi-
neering, including goals, principles, and the essential concepts that you need
to understand to establish your build engineering function. We discuss how to
get started along with the core concepts that are essential for establishing build
engineering best practices, including version IDs, understanding dependencies,
and establishing the all-critical independent build. We discuss the broad range
of tools available today, along with the cost of quality and considerations for
establishing required training. We look at the role of the build engineer and the
importance of considering the application architecture along with guidance for
establishing a build process that produces accurate results on a repeatable basis.
We also cover the all-important topic of continuous integration and the future
of build engineering. Build engineering is a core CM function, and this chapter
steers you in the right direction.

Goals of Build Engineering

The goal of build engineering is to be able to reliably compile and link your
source code into a binary executable in the shortest possible time. Build engi-
neering includes identifying the exact compile and runtime dependencies and
any other specifi c technical requirements, including compiler (linker and man-
aged environment) switches and dependencies. Build engineering improves both
quality and productivity for the entire team. I believe that the build engineering
team should consider themselves to be a service function with the development
team as their primary customers. However, build engineering must also some-
times have the authority to enforce organizational policies. As build engineers,
we provide a service to support the development effort, but our primary goal is
to help secure the assets of the firm that are built and released through the build
engineering function.

Principles of Build Engineering

The principles of build engineering include the following:

● Builds are understood and repeatable.

● Builds are fast and reliable.

ptg

2.1 Why Is Build Engineering Important? 31

● Every confi guration item is identifiable.

● The source and compile dependencies can be easily determined.

● Code should be built once and deployed anywhere.

● Build anomalies are identified and managed in an acceptable way.

● The cause of broken builds is quickly and easily identified (and fi xed).

2.1 Why Is Build Engineering Important?

Build engineering helps the development team by providing an accurate and
repeatable way to compile and link the code in the fastest possible way. Being
able to rapidly rebuild a release enhances productivity by facilitating software
development. Although fast builds are important for any software development
methodology, Agile and Iterative development have highlighted this issue for
some time now. Getting the build right also avoids serious problems that can
have catastrophic impacts on the development team and the entire organization.
I have personally seen a release and deployment issue actually impact the entire
world economy (which I describe in Chapter 6, “Deployment”). Build engineer-
ing problems can have the same impact. Build engineering is important because
it can improve both the quality of the application that you are developing and
the productivity of the entire organization involved.

Why Do Bad Builds Happen to Good Developers?

Build engineering can be very painful. I have seen environments where the
development team could not reliably get the same executable built from
one hour to the next. There were several reasons for this situation. The
fi rst was that they did not have reliable source code management practices
in place (which resulted in them not being able to retrieve the exact same
version of the source code from one hour to the next). The second reason
was that the build procedures themselves were convoluted and unreliable.
The third reason was that any new build requirements could not be sup-
ported without a considerable effort to tame the existing automated build
procedures into submission. The best approach we could find was to start
over rather than continue struggling with a homegrown solution that was
only understood by the consultant who wrote it (who had also gone on to
his next contract). I have seen this exact situation many times at a number
of large fi rms, including banks and hedge funds.

ptg

Chapter 2 Build Engineering32

2.2 Where Do I Start?

You should always start by looking at the existing development build proce-
dures. Sometimes, you will fi nd that the development team already has existing
build scripts perhaps using Ant, Maven, or Make. Often, the existing build pro-
cedures will only handle deployment to the existing development test environ-
ment. It is common for a build engineer to be required to take an existing build
script and modify it to support QA and production environments. Existing build
scripts may also fail frequently and require developer expertise to support them.
Your job will be to make these scripts more reliable and supportable. I have
often found that I have to start by understanding the application so that I under-
stand what I am trying to build. Sometimes, the architecture will be complicated
enough that you might need to partner with the developer to write a suitable
build system. Make sure that you start by evaluating the existing build tools and
processes before you start to improve them, implementing build engineering best
practices.

2.3 Build Engineering Core Concepts

A few responsibilities must be part of any successful build engineering effort.
The fi rst is that builds must be established that are repeatable, based on an iden-
tifi able baseline and that all dependencies are well understood and controlled.
Every build consists of and creates configuration items (CIs). Almost anything
in the build can be considered a CI. The first task of a build engineer is to verify
that all executables and essential scripts, documents, and text fi les are clearly
identifi ed.

2.3.1 Version IDs or Branding Your Executables

Just as you need to be able to readily identify a baseline of your source code,
you also need to be able to easily identify the exact version of anything that gets
created by the build process. That includes all binaries (intermediate code and
runtime modules) along with all configuration files. As was mentioned in Chap-
ter 1, “Source Code Management,” in CM terminology, we call these artifacts
configuration items (CIs), whether they are source, binary, or configuration files.
In an ideal world, everything should be identifi able with an immutable version
ID. In practice, we are used to looking at the About box in a desktop GUI to
see the version of the product that we are using. All documentation, including
release notes, tutorials, and tech notes, must include version identification so
that we know which version of the code they pertain to.

ptg

2.3 Build Engineering Core Concepts 33

2.3.2 Immutable Version IDs

The most basic form of this requirement is to stamp an executable with an im-
mutable version ID (and provide an easy procedure to retrieve the version ID).
I have set up build systems using a C++ static char variable with the version ID
stamped into the executable. I have also created JAVA classes to retrieve the ver-
sion ID and stamp the version ID into the manifest of the JAR, WAR, or EAR
fi le created by the build. The key is to make sure that the version ID can be eas-
ily traced back to the exact version of the source used to build that executable.

2.3.3 Stamping In a Version Label or Tag

In some cases, we actually stamped the executable with the source code man-
agement tool’s version label or tag used to build the release. Because we created
the build sandbox using this label or tag (and we locked it in the repository),
we were reasonably certain that we had all the information that we needed to
be able to reliably rebuild the baselined release as required. In some cases, we
also needed to capture and record the revision of the repository itself (because
tags could not be easily locked and developers could conceivably remove the tag
and attach it to another version of the code)—after the release was already on
its way to QA.

The Two-Line Fix Without the Code Regressing

Good build engineering practices mean that you will always be able to eas-
ily verify the exact version of the code that went into building a particular
release. They also mean that you can look at an executable running in
production and easily ascertain the exact version of the code used to build
that release. If you adhere to these best practices, you will be able to create
a new sandbox, retrieve the correct code baseline, and then make a two-
line change to the code (for a bugfi x) and be absolutely certain that your
code will not regress because of the wrong version of a header file or some
other compile dependency.

2.3.4 Managing Compile Dependencies

I have seen many builds break because an environment variable was set in the
developer’s own user account and then completely forgotten two months later
when the code was being built for the release to production, most likely using
another user account. It’s not just about source code; all compile (and runtime)
dependencies must be understood and controlled. That means that your build

ptg

Chapter 2 Build Engineering34

scripts should set all required environment variables and confi rm that all build
dependencies are correctly in place each and every time the build is executed.

2.3.5 The Independent Build

One of the best ways to avoid costly mistakes is to have every release built inde-
pendently and from the very top of the build structure so that all confi guration
items are completely rebuilt. This is often done by a separate release manage-
ment team or by an automated build process as in continuous integration (CI).
Many regulatory frameworks that establish the requirements for proper IT con-
trols do explicitly require not only a separation of duties but an independent
build, packaging, and release controls process, too. This might seem like a lot of
work, but from a compliance perspective, it is a basic requirement and expected
in most financial services, defense, medical, and government agencies. This is an
example of a regulatory requirement that makes complete sense and enhances
productivity and quality. I still remember the smiling face of a development
manager who had just implemented my procedures and was able to respond
quickly to a major software problem by quickly creating his sandbox, retriev-
ing a baseline, and rapidly deploying his fix into production. He was excited
that putting in proper IT controls had helped him rapidly respond to a problem
that previously would have taken much more time to address. We discuss the
requirement to restrict access to production in Chapter 13, “Establishing IT
Controls and Compliance.” There are other best practices that can help improve
productivity and quality, too.

2.4 Core Considerations for Scaling the Build Function

It has been my experience that a number of essential considerations must be ad-
dressed to establish the build engineering best practices for a particular develop-
ment group. Sometimes, these considerations relate to the cognitive complexity
of the existing build processes, which may be resulting in human error, code
defects, and loss of productivity due to constant rework. Part of this effort is
technical, but part of it is also working with the team to convince them that it is
possible to simplify the build process. I have seen situations where the technol-
ogy was hopelessly complex and others where the root cause of the problem
was that technology professionals were mired in making things a lot more com-
plicated than they needed to be. Obviously, we want to make things as simple
as possible and completely foolproof. You can expect some resistance as many
technology professionals focus on showing their prowess at handling complex
structures.

ptg

2.4 Core Considerations for Scaling the Build Function 35

2.4.1 Selling the Independent Build

Independent builds are supposed to be a verifi cation that all the required CIs
have been baselined (and secured in the source code management repository).
The independent build is often required by regulatory requirements to reduce
the risk of any possible mistake. That said, it can be a tough sell for you to
convince the development team that you need to change the build procedures
just to prevent any possible mistake. Developers often see the build engineer as
wasting time by rebuilding an application from the beginning. The team may be
aware that there is a regulatory requirement to independently build an applica-
tion before it is promoted to QA or production, but many will still snicker and
view this task as a waste of time. Being a member of the development team may
help you understand the technical issues involved with the build, but it also may
result in the build engineer being put in a compromising position. Ultimately,
management needs to create an environment for the build engineer to get the
information that he or she needs to be effective and still follow all required
corporate standards and procedures. I usually sell this verification step as being
a good way to guarantee (and literally test) that we did not overlook a compile
dependency. I also try to get the build process to be fast and automated so that
it does not require an excessive amount of time. You need to keep these consid-
erations in mind as you dive in and fix the technical problems with the build.

Fixing the build process may require that you address a situation where the
build has just been overengineered, resulting in too much complexity. There
may be some existing automation in place, but frequently, there are just too
many moving parts and no one really understands how the existing build works.
I have seen complex build systems that no one in the organization could support
or modify. Usually, this is a direct result of overengineering the build process. In
the next section, I share some thoughts on how to fix this situation.

2.4.2 Overengineering the Build

I have been called into a number of organizations that had unreliable and con-
voluted build engineering practices that interfered with the development effort.
Sometimes, the project and the organization were put at risk due to repeated
bad builds that demonstrated that the team could not successfully get a release
out the door. Sometimes, this occurred because of poor or nonexistent software
confi guration management (SCM) practices. But frequently, it was because the
build scripts themselves were overly complex and nearly impossible to support.
It’s been my experience that this problem usually occurred when one very smart
person created a build process that was so complex that no one else on the team
could possibly understand the procedures and automation to support the build.
In one classic situation, the build engineer learned how to use a build feature

ptg

Chapter 2 Build Engineering36

where he could pass in the environment (for example, development, QA, or
production) and then generate the required confi guration files to support that
environment. (We talk more about the best practices for creating confi guration
fi les in Chapter 3, “Environment Configuration.”) One part of the problem was
that this developer decided to design the build tool so that the same code had
to be rebuilt for each environment (such as development, QA, or production).
He basically did not understand the QA process and the need to build the code
once (but deploy and confi gure it as needed.) So, QA tested one version of the
build, but we promoted another version of the build when the code went to
production. We had controls in place to make certain that the same version of
the source code was used (e.g., baselined release), but rebuilding the code for
each environment was certainly not my idea of a “best practice” that would pass
any reasonable IT controls and compliance assessment. Another anomaly that
I found was that there were libraries with the same name, but different sizes in
several places throughout the build. Again, this was a direct result of a poorly
understood, overly complex build created by smart (hardworking) engineers
who did not really understand the requirements from a QA perspective or even
the tools that they were working with.

2.4.3 Testing Your Own Integrity

On a few occasions, I was pressured by management to do things that I believed
to be less than completely ethical. In one situation, I was asked to certify that
all the development teams in a large bank were compliant with the IT controls
required for section 404 of the Sarbanes-Oxley Act of 2002. In this situation, I
was given the responsibility to review the practices of all the development teams
to confi rm that they had proper change and configuration management controls
in place as defi ned by the ISACA Cobit model. This is the kind of job that is
pure delight for a CM evangelist, because I can help the team meet compliance
regulations and also improve their quality and productivity at the same time.
However, the organization was on a tight schedule to finish the IT controls part
of their SOX compliance, and I was actually brought in at the very tail end of
the project. My boss sat with me during the meeting in which the SOX compli-
ance officer was surprised to hear that I wanted to actually do a CM assessment
for each group before testifying that all the controls were being properly en-
forced. This time, I was successful, because I actually knew that three quarters
of the teams were using the right software configuration management (SCM)
processes because I had set them up. So, I begged for the time to just assess the
remaining groups, and then I attested that they were in compliance. Six months
later, however, I was asked to attest again, and this time, I found some groups
had regressed and were not in compliance. It was a political nightmare to deal
with this problem, and I eventually left the company. This happened at a large

ptg

2.4 Core Considerations for Scaling the Build Function 37

fi nancial services firm that soon went out of business. I believe that its demise
was in no small part due to a shift to short-term thinking that resulted in cut-
ting corners and eventually disaster for the firm. I have always viewed this as
my personal “Enron,” and I am glad that I did my best to get the firm to do the
right thing and comply with all industry regulations.

2.4.4 Reporting to Development Can Be a Conflict of Interest

In another incident, I reported to the head of the development team and I helped
to build and deploy a large international trading system. Being part of the de-
velopment team helped me understand the system a lot faster, and this was es-
sential because the technology was pretty complex. I built literally hundreds of
releases and deployed this trading system over and over again without a single
bad release. However, the deadline was fast approaching, and the head of devel-
opment had his bonus tied to delivering the application on time. The team fixed
bugs, built, and deployed over and over again. Finally, the deadline for going
live arrived, and I was ordered to build and deploy a version of the system that
had a number of fixes that had not been tested by the QA team. This meant
that we had tested one version of the system, which was approved, but we were
actually deploying another version of the system instead. I spoke with the head
of development and explained that we could not build and deploy a different
version of the system than the one that had been approved by QA. This senior
manager was not going to risk losing his bonus due to a missed deadline, and he
wanted the latest fi xes in the release. Eventually, I had to go above his head to
his boss who immediately said that he wanted the new release to get the usual
testing and approval from the QA team. The project deadline was extended by
two weeks, and we followed our process. Unfortunately, the head of develop-
ment viewed me as no longer being a member of his team, and my job became
considerably more difficult at this firm.

2.4.5 Organizational Choices

Ideally, the build engineering team should report at a high enough level to pre-
vent them from being unduly influenced by politics and pressure from managers
who are singularly focused on meeting their deadlines. It is common for build
engineering to be part of the QA group, but I have found that this usually cre-
ates a barrier to really understanding the system in a thorough and effective
way. I have also reported to the head of systems administration (because I was
deploying applications and my role overlapped with that of the SAs) and the
head of data security, because I was enforcing compliance. There are many other
ways to structure the organization, but the key goal is to make sure that build
engineering gets the information that they need and are allowed to operate with

ptg

Chapter 2 Build Engineering38

full integrity in protecting the assets of the fi rm. It is equally important that the
head of the build engineering team be someone who is willing to communicate
issues and, if necessary, stop the build from being released (pending resolution
of important issues). My own personal experience is that this can be a diffi cult
position, and senior management would be wise to provide the necessary sup-
port so that the build engineering team can do their job and protect the essential
assets of the firm.

2.5 Build Tools Evaluation and Selection

There are a lot of good build tools available and even more best practices to help
guide you on your way to establishing a reliable and extensible build process.
We’ll discuss some of the tools and best practices that you should consider-
ing implementing to support your organization. Once again, I will leave the
religious debate on which tool is better to the supporting website for this book
(http://cmbestpractices.com/tools). There are several types of build tools com-
monly used in software development. There was a time, not too long ago, where
build automation meant using Make (and perhaps some shells scripts) to auto-
mate every aspect of the build process. This worked well to support C and C++
builds, although Make often behaved differently depending on the underlying
platform. I have worked with Make on HP-UX, Solaris, AIX, and more recently,
Linux. Make was originally created by Stuart Feldman in 1977 at Bell Labs.
GNU Make certainly took a step forward to solve some of the cross-platform
build challenges, and it is worth noting that Make is used not only for C and
C++, but in some cases, for Java, too.

2.5.1 Apache Ant Enters the Build Scene

Ant was originally created by James Duncan Davidson as part of the Apache
Tomcat project (http://tomcat.apache.org). Ant was originally bundled in with
Apache Tomcat, and then Ant version 1.1 was released as a standalone product
in July 2000. Ant is very different from Make in that it is implemented using
Java classes (instead of writing shell commands).

2.5.2 Of Mavens and Other Experts

Maven began as part of the Jakarta Alexandria project in 2001 and was later
released as its own product. Maven tries to be an overall project information
source, setting standards for a consistent build framework and boasting that
“maven can do the heavy lifting” for you that formally would have required many
lines of XML code in Ant. Maven focuses on convention over confi guration,

http://cmbestpractices.com/tools
http://tomcat.apache.org

ptg

2.5 Build Tools Evaluation and Selection 39

in that Maven expects you to stick to its declared and expected conventions.
Maven does help to set up your initial project with all the suggested conventions
by providing an archetype mechanism whereby Maven can generate the skeleton
code to get you started using any one of a number of different Java frameworks.
It is also important to understand that Maven has a very specific lifecycle that
must be understand to successfully leverage Maven’s many features. I will pro-
vide more resources for getting started with Maven, along with methods for
refactoring the Maven build on the website that accompanies this book (http://
cmbestpractices.com).

The Apache website states that a maven is a Yiddish word for an “accumu-
lator of knowledge,” although I would translate maven as being an “expert.”
I am going to save the religious debate on whether Ant or Maven is better for
my website (http://cmbestpractices.com), although I will say that I have used
both extensively and defi nitely consider myself to be a maven on whether Ant,
Maven, or Make is a better build tool.

2.5.3 Maven Versus Ant

Ant requires a lot of XML code to indicate exactly what you want done. In this
sense, Ant is more procedural than Maven. Maven takes a different approach by
requiring that the application be structured in a specific and consistent way. This
is where Maven focuses on convention over configuration, as mentioned earlier.
Maven enthusiasts would note that developers must structure their applications
to adhere to Maven’s standards and from there, Maven does the heavy lifting
for you (because it knows where everything is located already and exactly what
needs to get built). Maven 2 uses pure Java XML (although Maven 1.1 used
jelly scripts). Maven has a well-defi ned lifecycle that should be understood for
optimum performance. In practice, many build engineers use Ant plug-ins to
extend Maven’s functionality. Maven defines the framework for you upfront,
although it can be a bit tricky to follow with complicated builds. It has been my
experience that developers can be quite opinionated when it comes to preferring
one or the other of these two well-respected tools. I have used Maven version
1.0.2 and 2.0 for some pretty large-scale builds in more than one company. I
have also used Ant version 6 and 7. I do believe that there are pros and cons to
each of these well-respected tools.

2.5.4 Using Ant for Complex Builds

Ant can be used for complicated builds and can also quickly descend into some
pretty obtuse and inconsistent XML. Ant scripts should be structured so that
each step can be executed separately with minimal dependencies between each
step of the build. For example, I have seen an Ant script that embedded calls

http://cmbestpractices.com
http://cmbestpractices.com
http://cmbestpractices.com

ptg

Chapter 2 Build Engineering40

to the source code management tool within the code necessary to compile the
Java classes. Then, when the team switched from one source code management
tool to another, they had to modify all the Ant XML. I have also seen this be a
problem where the team could not do a build because the source code manage-
ment repository was down for maintenance or backup. Good build engineering
scripts structure the approach so that you can create the development sandbox,
but then run the compile separately. You should never have your build depend
on the source code management tool being up and running.

2.5.5 Continuous Integration

Continuous integration (CI) is a popular best practice that refers to attempting a
build and deploy of code immediately after a developer commits changes to the
source code repository. CI became popular within Agile circles, although today,
it is a widely respected best practices in many non-Agile environments, too. CI is
usually done using a software package that makes it easier to monitor the source
code management repository for changes and immediately start a build. The re-
sults of the build are posted on a dashboard, including the most recent changes
responsible for any system outages, including a failed build. All CI servers are
not alike, and you should evaluate their features for use in your organization.
Because these tools change very quickly, I defer this discussion to the Tools sec-
tion of the website that supports this book (http://cmbestpractices.com/tools).

2.5.6 CI Servers

There are many popular continuous integration servers in use today. The deci-
sion on which one is best is a religious discussion that I would be glad to engage
in on the website that supports this book (http://cmbestpractices.com). This is
an exciting area for CM, with formidable open source solutions and commercial
products that boast extended functionality. Leading CI servers all support the
capability to automatically start a build when new code has been committed
into the source code repository. Alternatively, you can schedule a specifi c time,
each night, for a nightly build. CI servers can usually identify the most recent
changes, especially the last change that caused the build to break. Most of the CI
servers are confi gured using XML, although some have robust graphical front
ends that make administration much easier.

2.5.7 Integrated Development Environments

Integrated development environments (IDEs) are tools that allow developers to
improve their productivity and quality by rapidly developing applications in an
iterative way. IDEs usually have a compiler (such as C++ or Java) made accessible

http://cmbestpractices.com/tools
http://cmbestpractices.com

ptg

2.5 Build Tools Evaluation and Selection 41

via a plug-in. Build engineers face extra challenges when developers know how
to build only through their IDEs. This can make it difficult to write build scripts
(using tools such as Ant or Make) that can execute at the command line. Some
IDEs can produce scripts that can be run from the command line. Applications
should never be built and deployed to production (or QA) from within an IDE.
This approach is inherently not repeatable. One of the biggest problems is that
developers often do not understand their own build process that is handled im-
plicitly by the IDE.

2.5.8 Static Code Analysis

Build engineering is sometimes used as a focal point to conduct static code analy-
sis. This makes sense because the build engineer has access to each release of the
code and can make a test build of the code, if necessary, to instrument the code. I
have worked with static code analysis since the early days of Halstead complex-
ity metrics. A common application of static code analysis is to identify possible
security vulnerabilities so that they can be fixed before the code is released. The
build engineer is often the only person who can assemble all the code required
for a particular release and successfully build the entire system with whatever
hooks and modifi cations are necessary for the static code analysis. Obviously,
the build that is done for static code analysis, containing instrumented code, is
not normally the version deployed to production.

2.5.9 Build Frameworks

I have worked with many build frameworks that provided a well-considered and
well-structured way to develop a complete build solution. Most of these prod-
ucts allowed the user to schedule builds, handle allocation of build machines
(usually called build agents), and report back the results to a consolidated build
dashboard. These products may be part of a full application lifecycle method-
ology (ALM) solution or just plug-ins to extend the functionality of a specifi c
build tool. You need to spend some time to correctly evaluate the available build
solutions, and then select the right build tools for your organization.

2.5.10 Selecting Your Build Tools

Selecting the right tools is always a matter of evaluating your requirements, con-
ducting an evaluation, and leading your team to reach consensus. In practice,
many technology professionals find this hard to do effectively. You need to start
with identifying the tools available to support the technology that you are using.
Here are a few examples:

ptg

Chapter 2 Build Engineering42

● GNU make for C/C++

● Ant, Maven, or GNU make for Java

● MS Build or GNU Make for .NET (e.g., C#)

There is a lot more about build tools to discuss, and we will cover that on the
accompanying website, http://cmbestpractices.com/tools/.

2.5.11 Conducting the Bakeoff and Reaching Consensus

If at all possible, you want to include all your stakeholders in the tool selec-
tion process. Some organizations have a culture in which the decision is made
by the development management. Other organizations manage by consensus.
Long before anyone was referring to software development as being agile, in-
dustrial psychologists observed that self-managed teams were more effective,
especially in terms of achieved quality and productivity. Self-managed teams, by
defi nition, have the authority to evaluate and select the tools that will be used
by their team. Reaching consensus is a core competency of any successful self-
managed team. There are pros and cons to each approach, and my view is that
organizations need to determine the approach that fi ts their culture in the best
way possible. Overall, conducting a bakeoff between tools, sharing the results
and reaching consensus is often the best way to decide on the best direction for
choosing a tool or process to use in the software development effort.

2.6 Cost of Quality and Training

Planning a budget to support build engineering needs to include both the hard-
ware and software necessary to provide a fast and reliable build platform. Many
fi rms find it more efficient and cost-effective to use virtualization to provide
build and test environments as needed. Make sure that you anticipate the cost of
training, along with the resources necessary to support build engineering.

2.7 Making a Good Build Better

I have often found that developers had excellent build procedures already in
place, and my role was often to help improve the existing procedures to support
additional environments (such as QA and production). There have also been
times when I found that the build procedures worked for someone with a strong
development background (in the specific technology being built), but were error
prone and unreliable—especially for other technology professionals unfamiliar

http://cmbestpractices.com/tools/

ptg

2.7 Making a Good Build Better 43

with that particular technology. You want your build procedures to be reliable,
fast, and clear enough to be understood by the resources available to support the
build and deployment process.

2.7.1 “Bob-Proofi ng” Your Build

What I am about to describe is my own secret method for creating completely
reliable (and repeatable) build procedures. I have applied this method, described
in sections 2.7.2 through 2.7.4, in many situations where the development team
was struggling to get their builds completed and promoted to QA (and then
production) in a reliable and effective way. Often, the team called me in after
the project and the organization were already in danger of failure. Using my ap-
proach to creating repeatable builds, I was often able to help the team fi x their
build problems, frequently within just three builds! My technique is based on
approaches in other disciplines that I learned about in industrial organizational
psychology graduate studies at NYU. While learning about methods practiced
in other disciplines helped me develop a creative and unique approach to build
engineering, I also learned that there are many reasons why teams fail and only
problems related to build engineering can be fi xed by improving the build. (We
talk about other challenges, including overcoming resistance to change, later in
this book.)

2.7.2 Test-Driven Builds

I always capture not only the procedures for creating the build, but any steps
that I see developers using to troubleshoot the build, too. In one such instance, I
observed that every time the build failed the developers checked to see whether
a particular JAR was created and included in the WAR fi le. I did not fully un-
derstand how and why this JAR was sometimes missing, but I captured this
troubleshooting step in my scripts, and then always checked for the JAR on each
and every build. This gave us an early notifi cation if the build was broken (for
this common reason). I call building in these tests and creating scripts to auto-
mate and check each step of the build “Bob-proofing” the build. Obviously, this
might sometimes seem like overkill, but testing the build proactively will help
you create reliable builds and notify you much quicker if something goes wrong.
Developers usually like to believe that their builds work and are not likely to go
out of their way to proactively test their builds.

2.7.3 Trust, But Verify

As a build engineer, my approach is to “trust, but verify” by testing each and
every build. This is particularly important when the results of your work really

ptg

Chapter 2 Build Engineering44

matter in terms of the health and safety of others. I have worked on build efforts
where a mistake could result in planes flying into each other or some other seri-
ous incident. In many disciplines, the health and safety of others is very much
at stake. For example, aviation engineers spend a great deal of time ensuring
that mistakes are avoided through creating controls that are accurate and easy
to read.

2.7.4 The Cockpit of a Plane

In some disciplines, extreme efforts are made to avoid any possible mistake. The
most obvious reason for this focus on total quality is that a mistake could (and
has) resulted in the loss of life. To continue the theme introduced in the preced-
ing section, the cockpit of a plane is designed in such a way as to minimize the
likelihood of a mistake. This is done by creating controls that are easy to read
and designing the entire interface in a way intended to avoid any possibility of
a mistake. I believe that software engineering needs to learn a lesson from our
colleagues who design cockpit controls and practice this same approach when
designing application build and deployment procedures and automation. I try
to create build systems that prevent mistakes and proactively detect problems
that might occur during the build process. Build and deployment automation
needs to be created in a way that prevents mistakes from occurring. I have done
this many times and had the pleasure of leading a team from an unstable and
unreliable build approach to a completely foolproof repeatable process. Here
are some of the important considerations as you attempt to design your build
system as you would the cockpit of a plane.

● Design the build so that each step is easy to understand and follow.

● Anticipate what might go wrong and build in tests to verify that the build
is successful.

● Structure the automation so that one step does not break the whole build.

● Use dashboards and reports effectively to communicate build status.

2.8 The Role of the Build Engineer

Build engineers often need to have software development backgrounds and ex-
pert knowledge of the technology and the ability to write code, including Perl,

ptg

2.8 The Role of the Build Engineer 45

Python, shell scripts, and XML, to create reliable and repeatable builds. (Leap-
ing tall buildings with a single bound could be handy from time to time, too.)
Finding a good build engineer is challenging because technology professionals
who have strong development backgrounds usually want to develop code rather
than write build systems. Being a build engineer is both exciting and very dif-
ficult because the other developers frequently adopt new frameworks, which can
result in the build engineers being left behind and having to play catch-up. I have
also found that it takes considerable creativity to set up good build engineering
and still meet the quality and productivity goals.

The build engineer plays a key role in the software development effort. But, it
is also true that this role may be very different in one team versus another. I have
had the job of being a build engineer in a team where I had to rapidly build and pro-
mote hundreds of releases over and over again to assist in supporting the applica-
tion development effort. Often, build engineers are developers who are assigned
the build engineering role for a short time (to write the build infrastructure itself).
This requires both an understanding of the application architecture and fl uency
in the appropriate build tools themselves. We’ll examine some of the most com-
mon build tools in use today in general terms (and once again leave the specifics
and community debates to my supporting website, http://cmbestpractices.com/
tools) and consider some of the issues involved with choosing the right build
tool.

2.8.1 Know What You Build

Strong build engineers have both an excellent understanding of relevant build
tools and a deep understanding of the application architecture. For example,
I have worked with J2EE services interface configurations that were handled
through specifi c JMX resources. In other technologies, the same function was
handled by using separate configuration files. Developers usually have the exper-
tise to set up these facilities, but the build engineer needs to assist by defining the
requirements of the build process itself. As a build engineer, I must often work
across many technologies. One day, I may be delving into C#, .NET, and SQL
Server while trying to get my arms around all the related platform-specifi c tools
and technologies. The next day, I may be focusing on J2EE SOA with deploy-
ment to specific web and application servers. The next assignment might take
me into C/C++ using Make to develop embedded software (along with related
hardware and firmware components). Build engineers need to have strong skills
in the related technologies and also be able to work closely with developers,
whenever necessary. This is because build engineers often have to quickly (even
suddenly) adapt to working with new and changing technologies.

http://cmbestpractices.com/tools
http://cmbestpractices.com/tools

ptg

Chapter 2 Build Engineering46

2.8.2 Partner with Developers

I recall the fi rst time that I had to work with a Java-based object persistence
framework (that I had previously never heard of). I quickly tried to get up to
speed in this technology, but there was just no way that I could master every-
thing that I needed to know in time to write the build scripts for the upcoming
release. In these situations, you must partner with the developers to create a
reliable build framework. This can very challenging when developers are only
accustomed to using IDEs and, therefore, do not know how to build their ap-
plications at the command line. I usually handle this by establishing entry and
exit criteria for a build. For example, I usually require that the entry criteria for
the build should be a command line procedure to build the release (at least for
the development environment). These procedures can usually be modified to
support QA and production. The important thing is that the build should be
reliable and repeatable.

2.8.3 Drafting a Rookie

One of the best and most successful approaches that I have seen is using a new
developer as the build engineer. The new developer won’t know a thing about
creating repeatable builds, but I can teach them that. Instead, they know the
technology (or they are at least extremely motivated to learn it quickly). In fact,
it is my view that every developer should spend some time as the build engineer
as part of their training and job orientation. This helps to deal with the huge
problem of keeping up with the challenging architecture and helps with seed-
ing the development team with technology professionals who really understand
build engineering and release management processes.

2.9 Architecture Is Fundamental

Build engineers are often very busy with setting up repeatable processes. Once
they are successful, they become even busier and will often fi nd themselves
overbooked. The problem is that the development technology is not standing
still and other technology professionals are quickly learning and adopting new
technology frameworks. I have been on the receiving end of discovering that I
suddenly had to adopt and work with a new technology that I had never seen
before. In this situation, the build engineer is stuck playing catch-up with the
development organization. The first time that I had to work with object persist-
ence using Hibernate, I suddenly learned that there were surprising new build
anomalies, including my source management tool behaving differently than the
other builds that I had worked with before. I always try to bring this issue to

ptg

2.11 Continuous Integration Versus the Nightly Build 47

everyone’s attention up front and make sure the technology managers know that
I have to be kept in the loop as the technology architecture develops.

2.10 Establishing a Build Process

 Establishing build engineering best practices can be a difficult task. You may
decide which best practices will help your organization achieve success. You
may also choose the best tools for creating repeatable builds and setting up
continuous integration. However, it has been my experience that the build en-
gineering function must also provide training and support to the development
team on an ongoing basis. Some of my successes were in partnering with the
development team to fi x their build and deploy process and then turning over
the day-to-day operations right back to them (with me continuing as backup
support). Obviously, this assumes that your compliance department approves
this as an adequate IT control. I worked in one organization that complied with
SAS-70 and found this to be an acceptable control, and I worked in another or-
ganization where this was not considered acceptable. Even in organizations that
must maintain a separate build and deploy function to comply with regulatory
requirements, there remains a key role to support the developers in establishing
repeatable build and deploy processes. If your organization is one of the few
who do not need to be concerned with compliance, you should still consider
these basic controls to be excellent CM best practices that will help your team
improve quality and productivity.

2.10.1 Establishing Organizational Standards

Best practices are also all about establishing a set of organizational standards
such as the proper use of build tools, including Ant, Maven, and Make. This
may include proper naming conventions and standards for documenting build
scripts. For example, in some organizations, all builds are structured using a
parent Ant build.xml that is consistent for each team. Establishing organiza-
tional standards should be approached in a collaborative way and will likely
result in improved quality and productivity.

2.11 Continuous Integration Versus the Nightly Build

Continuous integration (CI) is extremely popular among software development
teams. These days, CI is often associated with Agile development. However,
this excellent practice has become popular among development teams regard-
less of the development processes that are being employed. It is also true that

ptg

Chapter 2 Build Engineering48

many teams do not need nor desire builds to be automatically triggered based
on changes being committed to the source code repository as is often associated
with CI. Very often, a nightly build is more than suffi cient and much easier to
set up, too. One reason for this is that CI may trigger many extra builds that
will fail, creating unnecessary failed entries on the CI dashboard. In some situ-
ations, the build might take a few hours to complete and CI causes builds to be
requested even before the previous build has been completed. This can create
a backlog of requested builds that are queued up, with specific baselines re-
quested, that may, in fact, be incomplete. I have worked in environments where
the better choice was a nightly build. My view is that you should always go for
the lightest process possible. I generally call this approach just-in-time process
improvement, and I believe that it is the most pragmatic and effective approach
to establishing an effective development lifecycle.

2.12 The Future of Build Engineering

Build engineering is a critical function that should be developed and supported in
your organization. Numerous standards and frameworks highlight the importance
of this area, and the industry is developing a number of robust tools to support
build engineering, too. We discuss specific standards and frameworks that relate
to CM in Chapter 14, “Industry Standards and Frameworks.” Build engineering
should be understood within the greater context of configuration management,
but its growth and well-deserved focus have led to considerable development in
recent years. You may have to implement build engineering because it is required
by your organizational compliance effort, especially in terms of implementing ef-
fective IT controls. But, there is a lot more to consider than just passing an audit.
As with any process-improvement initiative, you need to ascertain how build en-
gineering and all of its associated core competencies are required for your technol-
ogy effort to achieve success in terms of productivity and quality.

Conclusion

Build engineering best practices help your entire development team to be more
productive and results in higher-quality code. Your build processes should be
automated, traceable, fast, and kept as simple as possible. When the technology
is complex, try to break your build into manageable parts. If you “Bob-proof”
your build, your team will fi nd that they can develop code in an iterative and
effi cient way. You also need to carefully select your tools and consider how the
build engineering functions fits best in your organization. I hope that you will
drop me a line and let me know what you fi nd works and what needs improve-
ment in your own build engineering best practices!

ptg

Chapter 3

 Environment Configuration

Chapter Overview

3.1 Why Is Environment Confi guration Important? 51

3.2 Where Do I Start? 51

3.3 Supporting Code Promotion 52

3.4 Managing the Confi guration 52

3.5 Practical Approaches to Establishing a CMDB 55

3.6 Change Control Depends on Environment Confi guration 56

3.7 Minimize the Number of Controls Required 57

3.8 Managing Environments 57

3.9 The Future of Environment Confi guration 57

Environment configuration refers to identifying, modifying, and managing the
interface dependencies required for the system to successfully progress from de-
velopment to QA to production. Environment confi gurations are often called
runtime dependencies because they impact how the code will behave when it is
running in a particular environment (such as QA). This is important because the
requirements for running a QA environment may be very different from those
for a production environment. Even though you want QA to mirror produc-
tion, in practice, they are often different in many ways. Environment control
helps to manage these interface dependencies so that you get to the QA database
for testing and you keep the production database safe and secure. When build
engineering is done correctly, the code is built only once, and the environment

49

ptg

 Chapter 3 Environment Configuration555000

dependencies are configured before the code is deployed to its target environ-
ment. Environment configuration is all about controlling the runtime dependen-
cies required for the application to run and behave correctly. Closely related is
the function of environment management, which refers to handling the various
development, QA, integration, preproduction, and production environments
that are needed to handle the effective development, testing, and promotion of
applications. Environment configuration impacts all the other CM-related func-
tions. I wrote this chapter largely from the point of view of an IT organization
that must promote the code from development to QA to production as part of
its software development lifecycle. I have also worked in product development
organizations where there was less of a focus on QA versus production envi-
ronments because all the software was going to be packaged and shipped to an
external customer. Still, many development teams must consider environment
confi guration as an essential practice, and this chapter helps you manage and
control your configuration. This chapter also covers the information that you
need to manage your environments and their confi guration. We discuss how to
get started in environment configuration and also the more advanced topics of
implementing configuration management databases (CMDBs). There is strong
emphasis on supporting the code promotion process and the practical aspects
of managing configurations in terms of database selection, protecting produc-
tion from mistakes, supporting runtime configurations as tokens, and central-
izing environment variable assignment as a dynamic environment configuration
repository. It is essential to understand that any dependency could impact the
application, including the operating system patches and even any supporting
hardware interfaces (for example, firmware). We discuss change control as de-
pending on reliable environment configuration and minimizing the number of
controls that you really need to operate effectively. We also cover managing the
environments and future trends in environment configuration.

 Goals of Environment Configuration Control

The goal of environment confi guration is to always point to the correct runtime
resources, such as the QA or production database. Environment configuration
is all about knowing your interface dependencies and controlling their changes
accurately. Done well, environment confi guration improves quality and pro-
ductivity. Done poorly, environment confi guration will be the cause of defects,
wasted time, and other problems. Ultimately, the goal of environment confi gu-
ration is establishing and maintaining control as your system makes its way
from development to QA to production. Environment management also has the
goal of providing enough test environments so that development can be done
effi ciently and with the proper utilization of available resources. Best practices

ptg

3.2 Where Do I Start? 51

 in environment configuration will enable you to develop code faster and with
better quality.

 Principles of Environment Configuration Control

 The principles of environment configuration include the following:

● Environment configuration dependencies are identified and well under-
stood.

● Environments can be interrogated for their current status (for example,
ports open).

● Code should be built once with environment configurations changed prior
to deployment.

● Environment configurations should be changed in a controlled and pre-
dictable way.

● Environment configurations should be documented and understood by all
parties.

 3.1 Why Is Environment Configuration Important?

Environment configuration helps you to manage both compile and, especially,
runtime dependencies. I have viewed this as the Achilles’ heal of release manage-
ment for many organizations. It is a common mistake to accidentally specify
the production database (often the default) when you really wanted QA or in-
tegration testing. Getting your environment configuration under control will
help your release management and deployment. Having the flexibility to manage
multiple environments means (obviously) that your team can rapidly deploy and
test, which is essential for iterative development. Environment configuration is
important because you need to get your runtime (and compile time) dependen-
cies right!

3.2 Where Do I Start?

I prefer to start small with environment confi guration control. It can quickly
grow into a major project particularly when you start getting into the different

ptg

 Chapter 3 Environment Configuration52

types of CMDBs that you could implement. I recommend that you start by get-
ting your key compile and runtime dependencies understood and controlled.
Make sure that you eliminate hard coding of all dependencies as soon as pos-
sible. The rest of this chapter discusses how to get this done.

3.3 Supporting Code Promotion

Environment configuration control helps support the promotion of code
throughout the development lifecycle. Applications are typically developed by
technology professionals who iterate through a development effort where they
examine requirements specifications (and sometimes handwritten notes on nap-
kins). These requirements specifications are then transformed into working, run-
ning systems. We discuss tracking requirements throughout the lifecycle of the
release in Chapter 5, “Release Management.” The development team usually
has a runtime environment that can be used to enter tests and write code that
is then released to a dedicated test team, often called quality assurance (QA).
When the code is promoted to QA, it is reconfigured to use a QA database that
typically has more security controls than the corresponding database being used
by the developers. After QA tests the system and approves the release, the system
is usually promoted to production. The production environment typically has
the most security of all the environments, especially because production systems
often move real money, whereas the QA and development environments were
only handling “make-believe” transactions. Environment configuration control
helps to make code promotion predictable and repeatable.

3.4 Managing the Confi guration

There is nothing worse for a build engineer than promoting a new release from
development to QA and wondering whether every dependency was changed
correctly. It is even worse when the release is promoted to production and a
mistake could mean a bad trade (and losing a million dollars). Many different
types of interfaces are managed through environment configuration. For exam-
ple, interprocess communication ports (such as TCP) are usually wide open in
development and QA but closed only to known ports in production. Your data
security department may help you out by closing all the ports without warning,
effectively shutting down your application. There are many other types of con-
fi guration controls required by applications, including the name and location of
the target database.

ptg

 3.4 Managing the Configuration 53

3.4.1 Which Database Are You Using?

Most development environments have copies of databases that roughly match
the production database. Development and QA databases are usually smaller
and contain fictitious information when there is a business requirement to keep
the data confidential. These databases are used by the developers during the ap-
plication development process and QA during the testing process. Your environ-
ment configuration should point to the correct database for the work that you
are doing. I have had some amusing experiences with setting up test databases
for development purposes. (See the sidebar, “My Own Mickey Mouse Opera-
tion.”)

My Own Mickey Mouse Operation

Years ago, I wrote a personnel system for a major insurance firm that
helped senior managers decide and award raises and bonuses to their staff.
To do this effi ciently, I created a dummy test database with employees
named Donald Duck and Mickey Mouse. One of the senior vice presidents
of the fi rm walked by my computer and observed what appeared to be ac-
tual salary data on the screen. She sternly rebuked my carelessness in front
of a number of other people and stormed away. I went to my manager and
explained what had happened. If the senior vice president (who actually
was a delight to work for in every other way) had actually looked closely
at the screen, she would have seen that I was awarding Mickey Mouse a
7% annual increase with a merit bonus of $4,000. I had pointed my de-
velopment code to a test database that did not have any real data in it. It
is not always that easy, and there have been many incidents where serious
mistakes were made because of an environment configuration error that
resulted in significant loss to the fi rm.

3.4.2 Did That Trade Go Through?

Technology professionals don’t like to discuss these incidents, but there have
been numerous times when a transaction was supposed to be just a test; how-
ever, a mistake resulted in a bad trade or other serious mistake. I have known of
incidents where a significant amount of money was lost because a trade executed
by mistake. (Imagine buying 10,000 shares of a stock that you did not really
want.) Sometimes, the root cause was human (operational) error, but some-
times, the environment confi guration was set incorrectly, resulting in what was
supposed to be a test that actually resulted in a real transaction (possibly losing

ptg

 Chapter 3 Environment Configuration54

a lot of money). Most companies put in controls to prevent this event from ever
occurring, but the main point is to confi gure the application to point to the
correct environment. This is not always an easy task and there are a number of
tools and processes commonly used for ensuring that the environment is prop-
erly confi gured that have become popular in the last few years. For example, it
is always best to avoid hard coding the names of environment resources that
may require a lot of changes every time you move the application from one en-
vironment (such as QA) to another (such as production). I worked in one place
where they had a complicated (actually, convoluted) Maven build that created
the environment specific values during the build. The problem was that you had
to rebuild the entire application every time that it was promoted from one envi-
ronment to another. This was defi nitely not a good way to handle environment
dependencies. A much better approach is to centralize the management of this
information in one centralized repository using a technique that is sometimes
called token substitution.

3.4.3 How About a Few Tokens?

One best practice is to use tokens to refer to a specifi c database. For example,
$DBPROD1 would refer to the production database. $DBDEV1 would be a
development database, and similarly, $DBQA1 could be the corresponding QA
database. At runtime, the token is substituted for the actual database reference.
That means that the code would not contain hard-coded values. This approach
makes it much easier to manage these references. So far, this is all basic coding
strategy, but what is less common is using a centralized database to manage the
confi gurations. I have seen a number of organizations create a centralized re-
pository to store all compile and runtime dependencies that are accessed during
the compile phase of the build and the environment confi guration phase of the
system deployment. It is worth noting that this is a special type of CMDB that
has been in practice in many organizations for a long time. Using a repository
to manage your tokens means that you have a single location to change, and
then all of your applications can pick up the correct environment confi guration
(for both compile and runtime dependencies). For example, the port required
for interprocess communications might be 9099 in QA, but for any number of
reasons, 9089 in production. Your application refers to $PortA, and the desired
value is substituted for $PortA at compile (or runtime). Similarly, the database
holding your trades can be coded using a token that is then instantiated at the
right time. This is a common best practice that works much better than hard
coding values in your code or even config fi les that can also prove to be difficult
to manage. This approach often becomes so popular that many organizations
will centralize their CMDBs as a shared resource. Here’s how to do that.

ptg

3.5 Practical Approaches to Establishing a CMDB 55

3.4.4 Centralizing the Environment Variable Assignment

One approach that can be used is to create a centralized environment CMDB
that holds all of your environment configurations. This database needs to be
controlled so that only authorized resources make changes and all changes are
accurately tracked. Your build process then looks up the environment confi gu-
ration values during the build. The substitution of tokens for explicit values
should be set up in a way that is traceable so that you can always verify that
the correct configurations were created. When the application is confi gured for
deployment, the runtime configuration values should again be substituted for
the tokens used in the code. This should all be worked out before the release
is actually deployed. The application should not depend on the confi guration
database while it is actually running in production; otherwise, the CMDB could
potentially be a single point of failure. The best practice is to instantiate all
runtime dependencies during the release packaging (or possibly the deployment)
step, so that all substitutions are completed when the release is packaged for de-
ployment. I have mentioned a common best practice of centralizing environment
confi gurations in what is considered by many to be a configuration management
database. But there is a more common application of a CMDB, which we dis-
cuss in the next section.

3.5 Practical Approaches to Establishing a CMDB

The confi guration management database is a specialized information repository
that contains details about the environment confi guration. Most CMDBs are
specialized devices that examine the runtime environment and report back the
status of environment configuration values so that the correct values can be veri-
fi ed and serious mistakes prevented. In this approach, the CMDB performs the
function of discovery and reporting back to a centralized configuration manage-
ment information system. In some environments, the centralized database con-
taining the predefi ned environment configurations is also called a CMDB. I have
seen many organizations implement a number of different specialized CMDBs.
In practice, CMDBs often fall short of their intended goals. That does not mean
that you should not bother implementing a CMDB. Instead, I suggest that you
want to define the goals of the CMDB—whether they be storing confi guration
details or discovering the current status of a runtime environment. The contents
of a CMDB are typically loaded up to a centralized confi guration management
database. In the ITIL framework, this is called a configuration management sys-
tem (CMS). We discuss CMDBs further and the Information Technology Infra-
structure Library (ITIL) in Chapter 14, “Industry Standards and Frameworks.”

ptg

 Chapter 3 Environment Configuration56

3.5.1 Identify and Then Control

The fi rst step is always to identify the environment confi guration dependencies.
The next step is to control changes to these configurations. Environments should
then be verifi ed to confirm that they have the correct values. I have mentioned
the selection of the correct database and communication ports. Many other
runtime dependencies should be identified and controlled, too. For example,
some systems can spawn additional processes to improve performance. This
confi guration change only makes sense if the selected environment can support
the configuration selected. Identifying and controlling your environment con-
fi guration will make your application development effort much more successful.

3.5.2 Understanding the Environment Configuration

Application development can be complex and difficult to understand. I have
had assignments where there were just so many moving parts that it was almost
impossible to promote a release without making a mistake. Most technology
professionals won’t admit it, but I have seen many projects where mistakes were
made and time wasted due to the environment being overly complex. It can be
hard to see this unless you actually examine the details of the environment. In
my work, I always insist on getting into the trenches and getting my hands dirty
doing the builds and deployments myself. For this reason, my processes always
work and make sense in a practical way. Getting your arms around the environ-
ment confi guration will help you achieve success—especially when the environ-
ment is complex and prone to mistakes.

3.6 Change Control Depends on Environment
Configuration

I discuss best practices for implementing change control in Chapter 4, “Change
Control,” but for now, it is important to understand that changes to the envi-
ronment configuration can have major impacts and therefore need to be control-
led. Normally, a configuration control board (CCB) is responsible for reviewing
requests for changes (RFCs) that may impact the runtime environment. This
group is sometimes called a change control board instead, which we discuss
further in Chapter 4. The confi guration management system and specialized
confi guration management databases, whether used for managing environment
confi gurations or discovering the current state of runtime environments, will
help manage your environment configuration. Whatever controls you choose
to put in place, all environment changes need to identifi ed, understood, and
controlled. You need to fi nd the right balance between too many (burdensome)
controls and just enough to get the job done.

ptg

 3.9 The Future of Environment Configuration 57

3.7 Minimize the Number of Controls Required

It is common to keep environment control process very light in the beginning
of a project. Agile enthusiasts aptly call this “minimizing the amount of cer-
emony required.” I support taking a minimalist approach because too many
unnecessary controls just motivates people to get clever at bypassing the process
and does not really help avoid mistakes. It is much better to take a pragmatic
approach and have just enough controls to avoid mistakes. After the code is in
production (or even QA), controls need to be much tighter with no room for
error. You need to establish an approach to handle environment confi guration,
such as using tokens and a centralized environment confi guration database, as
previously described. Using a CMDB is also a recommended best practice and
can help you understand and manage a complex environment. It is always best
to establish these controls up front, but it is also common to phase them in as
needed. This is a good example where I have seen that mistakes and errors can
provide the motivation for improving your process through establishing tighter
controls. Establishing environment configuration best practices will save you a
lot of time and effort, improving both productivity and quality.

3.8 Managing Environments

In source code management, you need a sandbox to be able to write your code.
After it is written and ready to be tested (itself an iterative process), you need an
environment to host the release of the code. Continuous integration experts al-
ways recommend that you automatically deploy a release to a test environment.
You also want to know that you can test the code without accidentally dropping
a trade into production (by mistake). Make sure that you not only have enough
build and test resources, but an infrastructure to manage and maintain them on
an ongoing basis. It is usually a good idea to have an established procedure to
drop and re-create a test environment from scratch along with test databases
and any other required resources. Don’t skimp on your environments!

 3.9 The Future of Environment Configuration

I have seen a number of interesting tools and frameworks that helped manage
environment configuration. Most organizations have homegrown solutions, but
I believe we will see more effective tools and frameworks in the not too distant
future. I caution, though, that tools and frameworks still require that you do
all the real work; they just provide a structure and some best practices to help
you get the job done better and faster. I have also seen that virtualization has

ptg

 Chapter 3 Environment Configuration58

 impacted the management of environments significantly by providing a cost-
effective (often green) approach to dynamically building machines as virtual
machines (VMs) for use as build and test machines. This is particularly effective
when your system needs a large environment for only a short time. I have also
seen some approaches using software as a service (SaaS) and cloud comput-
ing. All the emerging technologies are good news for people responsible for
managing environments and their confi guration. You should always pilot these
approaches before signing on to confi rm that you will get the services that you
need to get the job done.

Conclusion

Environment configuration is an important function in configuration manage-
ment. Done well, it will help your team be more productive and avoid a lot of
painful mistakes. This best practice will also help you develop higher-quality ap-
plications by facilitating rapid iterative development. Make sure that you share
your own environment configuration best practices with me via the supporting
website (http://cmbestpractices.com).

http://cmbestpractices.com

ptg

Chapter 4

Change Control

Chapter Overview

4.1 Why Is Change Control Important? 61

4.2 Where Do I Start? 61

4.3 The Seven Types of Change Control 61

4.4 Creating a Change Control Function 65

4.5 Examples of Change Control in Action 65

4.6 Don’t Forget the Risk 69

4.7 Driving the CM Process Through Change Control 69

4.8 Entry/Exit Criteria 70

4.9 After-Action Review 71

4.10 Make Sure That You Evaluate Yourself 71

Change control is the most central function in configuration management. It is
also one of the most underutilized and often misunderstood functions. Large
organizations always have a change control board to act as a gatekeeper to
control changes to the production environment. This is obviously important,
but there is a lot more to change control than just gatekeeping. Some organiza-
tions have change control processes to govern requests for change. I call this a
priori change control. Environment configuration is also commonly controlled
by change control. I have seen organizations where there was a robust change
control structure arranged in a hierarchy from senior management to the techni-
cians making configuration changes and other organizations where the project

59

ptg

Chapter 4 Change Control666000

managers and development team leads handled change control as an implicit
project management task. In my own experience, I have identified seven types of
change control. In this chapter, I discuss each of these change control functions
that I have personally been involved with in large and medium-size international
banks, government agencies, defense contractors, and various fi nancial services
fi rms. Sometimes the change control processes were extremely detailed and of-
ten they were very light in terms of process. You need to understand which
change control processes make sense for your organization and exactly how to
implement them.

This chapter gives you a broad overview of the many aspects of change con-
trol, including the seven different types of change control and how to create an
effective change control function. I provide some examples of change control
that I have implemented or seen implemented by others. It is important to realize
that change control needs to have a strong focus on evaluating and mitigating
risk (as do all IT controls). I suggest that you consider driving your entire change
control process through change control with well-defined entry/exit criteria and
after-action reviews to discuss how each release was handled and whether there
are any areas for improvement. Whether your environment requires very light
change control processes or more robust and formal controls, you will want to
implement change control best practices as part of your CM efforts.

Goals of Change Control

The goal of change control is to carefully manage all changes to the production
(and usually QA) environments. Part of this effort is just coordination, and that
is very important. But part of this is also managing changes to the environment
that will impact all the systems in the environment. It is also essential to control
which releases are promoted to QA and production. Change control can act
as the stimulus to all other configuration management-related functions, too.
This chapter explains how to use change control to manage your confi guration
management efforts.

Principles of Change Control

The principles of change control include the following:

● Changes should be planned and not just last-minute events.

● Changes should be understandable, including their downstream impacts.

ptg

4.3 The Seven Types of Change Control 61

● Authority and approvals for changes should be established and obtained
as appropriate.

● Procedures for emergency changes should be established to cover emer-
gency incidents.

● Change control should assess and confirm that all confi guration manage-
ment processes are being followed.

4.1 Why Is Change Control Important?

Change control is important because it can help you to prevent problems that
can be costly. Without change control, changes to your production environ-
ment will likely result in serious mistakes that can impact your business in a
significant way. A number of different types of change control can add value and
help your organization run more efficiently. Change control can also drive your
entire configuration management process. From guarding changes to your pro-
duction environment to controlling changes to your processes, change control is
important to your entire application lifecycle.

4.2 Where Do I Start?

Most people get started with change control by establishing a change control
board (CCB) to review and approve all changes to production (or QA). This
may include releases, patches, and runtime confi guration changes. It has been
my experience that it is best to start small and then add additional controls as
needed based on risk (for example, potential for mistakes). Change control typi-
cally starts small and then grows as needed. As always, start by considering your
own goals and priorities. There are seven types of change control that you need
to consider implementing.

4.3 The Seven Types of Change Control

There are many different types of change control, and you will likely need to
have two or more different CCBs with each handling one or more of the fol-
lowing seven types of change control. I am not suggesting that you need to im-
plement all these change control functions. In my experience, change control is
usually a mix of these functions.

ptg

Chapter 4 Change Control62

4.3.1 A Priori

Some organizations have a disciplined process whereby permission for a change
is requested before any actual change to the code is made. I have seen defense
contractors that had to describe the changes that they want to make and then
await approval from a government agency before actually writing the code that
implemented the change. In this process, requests for change (RFCs) are usually
created and reviewed by the respective CCB. A priori change control usually
refers to changes in the code and most often consists of defi ning requirements
and then the actual design of the system. The role of configuration management
in this case is to track requirements throughout the lifecycle and confi rm that
all requirements were included in a specifi c release. Many organizations have
a regulatory requirement for tracking requirements, and that often includes a
change control function. Tracking source code changes to requirements is im-
portant, but controlling changes to production are essential, too.

4.3.2 Gatekeeping

The most common type of change control, and usually the first to be imple-
mented, is “gatekeeping” change control where the CCB reviews RFCs that will
impact production (or QA). This usually involves giving authority to promote a
new release of the code into production (or QA). Similarly, patches to existing
releases are also reviewed by the CCB. This function generally evaluates whether
there is a risk that the RFC could potentially impact the production (or QA)
environments. The CCB is responsible for reviewing the RFC and approving
or rejecting the RFC. It is common for the members of the CCB to have ques-
tions about whether the change requested could impact the production (or QA)
environment. Traditionally, the CCB will require that all necessary technical
experts be present at the CCB meeting—although, in practice, this is often not
practical. The ITIL framework has made popular the use of a change advisory
board (CAB) that consists of experts who can advise on the downstream impact
of a particular change. I discuss how to set up a CAB and why it might need to
be separate from the CCB later in this chapter. Closely related are configuration
changes, as discussed in the next section.

4.3.3 Confi guration Control

When the RFC involves a configuration change, the CCB reviews and consid-
ers the downstream impact of the configuration change required. Confi guration
changes can have the same impact as a new release. In practice, understanding
the interface dependencies often requires specialized expertise and should be

ptg

4.3 The Seven Types of Change Control 63

reviewed by a board that contains members who possess this expertise. In this
case, I believe that the governing body should be called a configuration control
board. However, there is some confusion in the terminology commonly used
today. Many of the industry standards describe the configuration control board
as governing the confi guration of a system in terms of the confi guration of the
source code itself instead of environment confi guration. In these standards, a
confi guration of the code refers to a specifi c set of versions of the source code.
I believe that this usage is confusing and a relic of days past when confi gura-
tion control referred to controlling the version of a Cobol program that was
being promoted on a large IBM mainframe computer. Today, we promote a
packaged release that may contain thousands of confi guration Items, including
binaries, XML, and many other artifacts. I believe that it makes more sense to
use configuration to refer to environment confi guration and to use terms such as
baseline or release to refer to a specific set of code versions that are promoted as
a release. There are many reasons for this. Most releases are packaged, and the
entire release package is deployed as a complete package. The last thing that the
administrator deploying the release wants to know about is the specific versions
of each of the confi guration items that make up the packaged release. However,
in these same situations, environment confi gurations such as interprocess com-
munication ports are still managed through the change control process, as they
should be. So, if you want port 9444 opened on an application server, you need
to complete a change request and, once approved by the confi guration control
board, the data security team will modify the iptables to allow interprocess com-
munication on port 9444. In my opinion, true configuration control should refer
to interface (runtime) dependencies only.

4.3.4 Change Advisory Board

I have been very impressed by the itSMF’s ITIL framework that places a strong
focus on confi guration management in the ITIL section on transition. I discuss
this further in Chapter 14, “Industry Standards and Frameworks.” ITIL de-
scribes a change advisory board (CAB) that acts as an expert resource to the
change management function. This is the best description that I have seen that
solves the common problem that the folks involved with the process of change
control might not be the most knowledgeable in terms of all the required tech-
nical details. It is appropriate that the CCB have access to all required experts
to effectively review requests for change and identify any possible downstream
impacts. Without the services of a group similar to the ITIL CAB, changes could
be made that are not understood, resulting in mistakes and system outages.

ptg

Chapter 4 Change Control64

4.3.5 Emergency Change Control

There are always times when emergencies require immediate changes. It is likely
that the CCB cannot meet at any hour of the day or night to authorize emergen-
cy changes, and focusing on strict adherence to the regular process may result
in the company production system being down for an extended period of time.
Any successful change control function must include a well-defi ned process for
managing emergency changes. I recommend that a very senior manager’s ap-
proval be required for emergency changes and that there be discussion after the
event to understand why an emergency change was required in the fi rst place.
I have seen situations in which technology professionals abused the emergency
change control process to bypass the regular change control process. In this case,
you will be successful if you have the support of senior management to ensure
that everyone follows the process in the best way possible.

4.3.6 Process Engineering

Organizations establish processes to run their businesses on a day-to-day basis.
These processes are established, and then the teams affected are expected to
comply with the process. The processes will sometimes need to be adjusted, and
this can have wide-ranging impacts on the entire organization. In this case, the
process engineering should be placed under control of a change control board
that is responsible for reviewing requests for changes to the process. The CCB
for process is also tasked with communicating process changes to all affected
parties and stakeholders. I believe that the best response to a mistake is to reex-
amine existing processes and ascertain whether additional process steps are war-
ranted. Process improvement is an organized continuing effort, and the process
CCB can help to manage the process engineering effort on an ongoing basis.

4.3.7 Senior Management Oversight

The change control function should provide visibility to senior management
and other stakeholders so that everyone knows the status of upcoming changes
and also changes that have been completed (whether successfully or not). The
best way to do this is with a dashboard that lists the upcoming RFCs, including
their status, pending approvals, and other relevant information. You should
also coordinate these efforts with the project management team, especially if
your organization has a formal project management office (PMO). Some of my
colleagues have pointed out that this function might seem different from the oth-
ers, and I agree that it is indeed unique. Many organizations arrange their CCBs
in a hierarchical fashion to ensure that change control has the proper oversight
and control. This function maintains the topmost organizational oversight from

ptg

4.5 Examples of Change Control in Action 65

a process and change control perspective and is normally only used in larger
organizations.

4.4 Creating a Change Control Function

Change control involves establishing procedures to review all requests for chang-
es and ascertain whether there are downstream potential impacts that might or
might not cause a problem. Change control includes acting as a gatekeeper. In
this regard, the change control function reviews requests for change and grants
permission or rejects the request for change. Most organizations establish a CCB
to review and evaluate all requests for changes. We discuss the role of the CCB
as is commonly described in many industry standards, including those approved
by ISO, IEEE, and frameworks, including Cobit, ITIL, and the CMMI. I also
suggest that many organizations often handle configuration change control sep-
arately from other change control functions.

4.5 Examples of Change Control in Action

Change control takes many forms, and I have seen effective CCBs and quite a
few CCBs that just wasted people’s time. I am a process-improvement profes-
sional with a background in industrial psychology. I love process and process
engineering, but I do not enjoy verbose processes that leave everyone wishing
that there was a way to avoid wasting an hour in a pointless meeting. Here are a
few examples of useless CCBs and a few excellent CCB best practices.

Conflict Between Teams

I once worked in an organization where the head of data security did not
get along well with the head of the UNIX systems administration group.
As a result, each group started its own change control function and some-
how managed to be able to not attend each other’s meetings. This break-
down in communication directly resulted in production system outages
because the security team would decide to close a port and the systems
team would not find out until the production system stopped working.
This happened at a government agency, which had already been cited by
the GAO, for failing to have proper IT controls in place. However, the or-
ganization continued to be mired in politics, and its change control wasted
countless hours in addition to being ineffective.

ptg

Chapter 4 Change Control66

4.5.1 The 29-Minute Change Control Meeting

I love implementing process improvement when it is specifi cally intended to
solve a particular problem. This usually takes some marketing of my services
and convincing colleagues that better process can mean better results. But, ad-
dressing specific problems and showing results is probably one of the most en-
joyable aspects of being a configuration management evangelist. I worked in
the NYC offi ce of a large international bank that had a recurring problem in
which changes in one part of the code would almost always break another part
of the code. The software was designed to serve offi ces in major fi nancial cit-
ies throughout the world. The problem was that a change for the Zurich office
would often break the code impacting the Tokyo offi ce. After this happened a
few times, I offered to create a CCB that focused on the common body of code
that was often the cause of these problems. Twice a week, we had a meeting that
I personally guaranteed would never run longer than 29 minutes. I picked 29
minutes as a target for two reasons. The first was that everyone was extremely
busy and already working long hours. I could not successfully implement a proc-
ess that took very much of their time or else people would just fi nd excuses to
not participate. The second was that I spent a fair amount of time working in
broadcast radio (starting when I was in college) and learned that it was indeed
possible to run programs that started on time and finished exactly at 29 min-
utes and 29 seconds. Running meetings effi ciently is essential for implementing
process improvement effectively. I also established the best practice of requiring
explicit entry criteria for starting the meeting and also explicit exit criteria for
ending the meeting. This helped overcome resistance to change because every-
one agreed that we managed the time required for the CCB in an efficient way.

4.5.2 Change Control at the Investment Bank

I worked at another company where change control was a loosely controlled
weekly meeting during which the team reviewed open tickets to discuss new
requests and completed tasks. Change control in this context ran the full gamut
of gatekeeping for new releases being promoted to production and QA to minor
changes such as downtime to install a disk drive. The division was relatively
small, and this meeting was sometimes effective. The record keeping was not
perfect, however, and the division often got into trouble with the audit depart-
ment because it could not account for every production change that was made to
the systems. It also had a recurring problem that developers could get access to
the production machines and frequently made emergency changes that were not
tracked effectively. This team also suffered from busy managers often skipping
the change control meeting and then being surprised when they were unaware of

ptg

4.5 Examples of Change Control in Action 67

pending changes. This was a tough environment to work in, and managers often
resisted new ideas and process improvement. They also had frequent production
outages, which they would try to explain away as being caused by some exter-
nal factor that was beyond the control of the team. In truth, the culture of the
organization did not lend itself to improving the process and I had to accept the
tough lesson that I would not always be completely successful. There were other
times when I felt that the CCB was not operating as effectively as it should be.

4.5.3 Change Control at the Trading Firm

I worked at another company where change control was a simple gatekeeping
function. A senior manager from the systems group chaired the CCB and re-
viewed all the RFCs on a weekly basis. If the RFC was incomplete, the change
request was abruptly denied. In some ways, this CCB was rather “effective” in
that the decisions were made quickly and approval or rejection communicated
effectively. However, important subject matter experts were often not invited to
the meeting, and sometimes, the CCB lacked the technical expertise needed to
make the right decision. In fact, this CCB often operated based upon political in-
fl uence instead of technical expertise. This resulted in a number of mistakes and
resulting system outages. It also had to rely too much on an emergency change
control process when a request was rejected in the regular change control proc-
ess. In this case, the group was less than effective because one manager exercised
too much positional power as the leader of the CCB, and the organization often
suffered as a result. I was sometimes surprised at how harsh and abrupt his com-
ments were to our colleagues who were just trying to get their change requests
approved.

When Every Day Was My Birthday

I recall one organization where the developers were accustomed to getting
access to production and doing their release management and deployment.
There was a lot of instability, so management brought me in to establish a
repeatable and reliable release management process. The problem was that
the development team really didn’t want me around because they preferred
to be able to have the control to do their own releases. During this time, I
noticed that they often left out important details that I needed to know to
do the release successfully. I am not suggesting that this was an intentional
and calculated omission. But, it was true that every day seemed like it was
my birthday because there were always surprises coming my way!

ptg

Chapter 4 Change Control68

Hierarchy of Change Control

Some organizations have a hierarchy of CCBs that organize and oversee
the change control process. The high-level CCB is usually staffed by senior
managers who confi rm that the change control process is being followed.
The next level down is usually a divisional CCB that is responsible for co-
ordinating changes that might affect more than one group. This continues
all the way down to a project specific change control group that focuses on
changes that impact a particular project. There also are specialized change
control groups that serve a very particular purpose.

Specialized Change Control

The data security group might run a specialized change control function
that focuses primarily on security-related changes. For example, changes
to fi rewall rules might need to be coordinated by a specialized change con-
trol function. Authentication and entitlements are also often handled by
the data security group and might be handled by a specialized change con-
trol group. This approach works if there are lots of requests that are spe-
cifi c in nature and need to be handled by a centralized resource. Handling
fi rewall rules is probably the best example of this requirement.

e-Change Control

Change control does not always require an in-person meeting. One best
practice is to implement the entire change control process through a proc-
ess automation tool. I have seen this done successfully with just an email
list, although that approach is certainly not optimal. Using an automated
workfl ow solution can support both in-person meetings and online meet-
ings, too. In this approach, the RFC is completed online and often catego-
rized depending on the type of change requested and the resources needed
to evaluate and approve (or reject) the change. Using an automated tool
can also help to track all change requests, including who authorized the
change and whether the change was completed successfully. I have seen
tools like this provide electronic signatures using cryptographic keys. The
e-change solution should include a dashboard to help communicate the
status of all changes and provide visibility to all affected parties and stake-
holders.

ptg

4.7 Driving the CM Process Through Change Control 69

4.5.4 Forging Approvals

It seems hard to believe, but I worked at one international bank where the
project managers would actually walk over to someone’s desk when they were
at lunch and use their computer (and account) to forge an electronic approval.
Aside from the lesson learned that you should always lock your computer when
you are away from your desk, this environment really shocked me with just how
far they would go in bypassing the approval process. This company had a lot
of outages and other incidents, and it was no surprise that they often had prob-
lems that could be traced to their lack of discipline and repeatable processes. I
learned a lot at this company, but most of it was what you should not do! Their
practices resulted in a material risk to the firm and that certainly showed up on
a day-to-day basis. Risk is something that you always need to consider.

4.6 Don’t Forget the Risk

Risks are inherent in any major IT effort. The change control process should
always consider risk in terms of what might be impacted by a particular change.
This might mean that you will need to escalate a particular request for change
to advise others of a problem that could possibly occur. It also might mean that
you must take additional steps to mitigate risks. It should always mean that you
communicate risk to all the stakeholders involved with this effort. In particu-
lar, signifi cant risk is one of the items that should be communicated to senior
management. It is common for senior management to be interested in change
control, and you should consider driving the entire process through change con-
trol, too.

4.7 Driving the CM Process Through Change Control

The change control process can drive the entire confi guration management ef-
fort by requiring that all requests for change come with all related entry criteria
completed. For example, the RFC to promote the release to QA should also
include reviewing the CM plan to make certain that all the confi guration man-
agement functions are completed correctly. Using change control to drive the
CM process requires considerable commitment and support from senior man-
agement. There needs to be a well-defi ned CM policy that spells out the need
for compliance with all related confi guration management directives. Another
example of how change control can drive the release process is reviewing all the
steps required for the release in detail. The CCB can recommend that the re-
lease process be automated and get release managers to work together better to

ptg

Chapter 4 Change Control70

compare and share release management best practices, including script auto-
mation. This can and should include all aspects of confi guration management,
including source code management, build engineering, environment confi gura-
tion, release packaging, and deployment.

4.8 Entry/Exit Criteria

The entry criteria for the change control meeting should be a concise description
of the requested changes. I always require that project managers and develop-
ment leads provide enough technical details about the change in advance of the
meeting that other managers can review the request and ascertain whether there
might be some impact on their own systems. The meeting itself is a discussion of
possible downstream impacts and whether the change is actually required. The
important information is provided for review before the meeting, and the other
managers know that they have to participate or else be prepared to handle the
consequences of an unexpected change. The exit criteria are descriptions of the
required tests to verify that the changes are successfully implemented without
impacting the other systems. I liberally use peer pressure to make this effort a
success.

Implementing a process can sometimes be a tug-of-war between the project
managers and the change management group. The PMs and development man-
agers will insist that they are too busy with real work to be bothered with fill-
ing out forms and attending meetings. It works a lot better if you can get the
PMs and development managers to view their efforts as being a service to their
peers instead. I discuss this further in Chapter 10, “Overcoming Resistance to
Change.”

Impacts on Other Systems

The change control function should be integrated with other process au-
tomation systems, too. For example, help desk systems often track events,
incidents, and problems that may impact the delivery of a particular serv-
ice or technology resource. This is well explained in the itSMF ITIL frame-
work. Approved RFCs should always be communicated to the profession-
als on the help desk who will be getting the call if a problem occurs. The
change control system should be integrated with other workflow and proc-
ess automation systems, too. This will help with the planning of changes
and the evaluation of changes after they occur, too.

ptg

71Conclusion

4.9 After-Action Review

Change control should always be reviewed after the change has been completed.
This is important regardless of whether the change was successful. When RFCs
are completed successfully, the CCB simply reviews the completed change and
advises that the change is completed. When problems occur, the after-action re-
view should facilitate an open and honest discussion of what went wrong, and
the CCB should make plans to avoid problems in the future. W. Edwards Dem-
ing, widely regarded as the one of the great leaders of process and quality im-
provement, noted that it is essential for organizations to drive out fear. This is es-
pecially true when conducting an after-action review. The team needs to feel safe
that mistakes and problems can always be discussed in an open and honest way.
The focus should be on how to prevent the mistake from occurring again. The
after-action review is sometimes called a post-mortem or, in Agile, a retrospec-
tive. Regardless of the name, it is essential for the organization to discuss what
went well and what needs to be improved. Mistakes are often the best catalyst for
enhancing organizational processes to prevent mistakes from reoccurring.

4.10 Make Sure That You Evaluate Yourself

Change control is one of the most important functions in configuration manage-
ment. It also should be continuously evaluated and improved. The CCB should
be open to input from all stakeholders in the organization. This might mean that
some people advocate that the CCB lighten up controls a little bit so as to not
impact productivity. More often than not, it will actually mean that the CCB is
asked to widen its role and actually strengthen its controls. This is particularly
true after a mistake has occurred. You might even find that change control is
held responsible for failing to prevent a mistake from occurring. The phrase that
you will sometimes hear is this: “Gee that should have been caught in the change
control meeting.” Once change control is considered an essential function that
cannot be bypassed, you will really know that you have been successful.

Conclusion

There is a lot to change control, but it is often the most overlooked (and avoided)
CM-related function. This is paradoxical because you can drive all of your CM
best practices from within change control. I encourage you to start small and
implement each of the change control functions as needed. Change control,
along with all the other CM functions, needs to be constantly monitored and
improved. Please share your change control-related best practices with me, in-
cluding challenges that you have encountered and your own successes!

ptg

This page intentionally left blank

ptg

Chapter 5

Release Management

Chapter Overview

5.1 Why Is Release Management Important? 75

5.2 Where Do I Start? 75

5.3 Release Management Concepts and Practices 76

5.4 The Ergonomics of Release Management 77

5.5 Release Management as Coordination 80

5.6 Requirements Tracking 81

5.7 Taking Release Management to the Next Level 81

Release management is a core function in confi guration management that fo-
cuses on packaging a system for promotion from development to QA to produc-
tion. If you are supporting a software production company, “production,” for
you, may be shipping the product to the customer, instead of releasing the code
to the production (or QA) environment. Whereas release management should
focus on packaging the code created during the build process, release manage-
ment is, in practice, often viewed as being a broad function that may encompass
both source code management and build engineering. Release management in
a corporate IT environment is slightly different from release management for a
software product company—although I have worked in software product com-
panies that still maintained separate QA, integration, and production environ-
ments as if they were a corporate IT environment even while shipping the fi n-
ished product to an end user (or pushing changes via an automated installation
process). In this chapter, we focus on defining release management as a function
that takes over after the build has been completed and prepares the release for

73

ptg

Chapter 5 Release Management777444

deployment into the desired environment. After a release has been created, it
should conform to all the standards set by the release management team. In this
chapter, we examine these and other best practices related to release manage-
ment.

This chapter covers the release management functions that include packaging
and confi guration identification procedures such as creating immutable version
IDs and shipping release maps (that can be verifi ed in production). I view the
basic ergonomics of release management as essential, and yet they are rarely,
if ever, discussed as part of confi guration management. This includes avoiding
human error and dealing with too many moving parts. Release management
should also be viewed as coordination and communication, and needs to con-
sider the links to requirements tracking and traceability. The future of release
management will include the use of cryptographic keys to verify that that the
entire release is intact. This chapter is packed with essential information on the
release management function.

Goals of Release Management

The goal of release management is to create and maintain a repeatable process
for packaging a release that includes a clear way to identify every component of
the release. Release management must be clearly defined with little or no chance
of errors occurring. Generally, release packaging is an automated function that
includes creating an immutable ID that is embedded into the release package
itself. Release management should also coordinate any dependencies that might
be required for the release to successfully deploy. Finally, release management
should be completely traceable with a clearly defi ned procedure to verify that
the correct components have been deployed into a runtime environment.

Principles of Release Management

The principles of release management include the following:

● Releases should be readily identifiable with an immutable version ID.

● Releases should be packaged with all the dependencies included.

● Release packaging should be automated and designed to avoid human er-
ror.

● Release management should be fast and reliable to facilitate iterative de-
velopment.

ptg

5.2 Where Do I Start? 75

●

There should be a mechanism to conduct an audit of a release package to
verify all of its configuration items.

● The contents of a release should be well understood, including the tracking
of requirements.

● Release management should be a source of information on the status of all
releases, ideally though a release management dashboard.

5.1 Why Is Release Management Important?

Release management (RM) provides order to the development process, which
is often in a constant state of creative chaos. It is common for all the confi gura-
tion management functions to be grouped under release management, although
I believe that to be misleading. Release management is, above all else, the fi rst
line of defense in making sure that the release is ready to go. There is a lot
more, though, because release management often plays the key role in packag-
ing, coordinating, and communicating the status of the release. In my world,
RM interfaces with the project management function, development, QA, and
operations support. In many ways, RM is the glue that keeps the development
process on track.

5.2 Where Do I Start?

There are several places where you could start with implementing an RM func-
tion. Sometimes, you need to focus on creating a release calendar and commu-
nicating status and, in this context, RM is a communications and coordination
function. I usually start by making certain that releases are always packaged in
a reliable way that eliminates any chance of mistakes. You might fi nd that you
have specific goals and priorities that will drive where you start with RM. I usu-
ally get called into an organization to solve a specifi c RM-related problem. In
this context, my performance is judged based on whether I can solve the specific
problem that is adversely impacting the organization. If you have the luxury of
starting up an RM function without a specific fire to extinguish, I would say that
you should start by ensuring that you have a reliable way to identify all configu-
ration items (also known as confi guration identification) and then proceed to
automate your release packaging process.

ptg

Chapter 5 Release Management76

5.3 Release Management Concepts and Practices

A variety of RM concepts and practices are discussed in the following subsec-
tions. The focus of release management should be on ensuring that every con-
fi guration item (CI) has a unique version ID. This means that every binary has a
unique internal stamp that can tell you the version ID of the CI. It is common for
developers to proudly point out that the code in the source code management
tool has been baselined using a unique version label, tag, or other identifier. But
in release management, we have to ensure that all CIs can be identified when
they are no longer solely in the version control repository and are also running
in a production (or QA) environment.

5.3.1 Packaging Strategies That Work

In an ideal world, every configuration item should have an embedded immutable
version ID that correctly identifies the exact version of the configuration item de-
ployed. Release packages typically consist of one or more complete components
that can run as a unit. It is true that there may be other dependencies required
for the release, but one of the roles of RM is to identify these dependencies
and provide a reliable way to manage them. Of course, you want to make sure
that the embedded version IDs can be traced back to the version labels or tags
used to baseline your source code in the source code repository. I should also
point out that configuration items include all binaries, configuration files, and
documentation—essentially every single piece of code or binary that goes into
a release. Obviously, you need to take a reasonable and practical approach to
this effort. You might not be able to imprint immutable version IDs in every CI.
You should always take a “risk”-based approach to this effort, which means
that you consider what bad thing might happen if you have the wrong version
of a CI running in production. After identifying all of your CIs, the next step is
to package and prepare the release for deployment. Remember that the packages
themselves also need to be identifiable.

 5.3.2 Package Version Identification

Every release should be delivered as a complete package with a unique and
verifi able version ID embedded in the release package itself. The release pack-
age should be able to tell you exactly what version has been deployed. It is not
enough to just have a record of what was deployed at a particular time. I have
seen incidents where the release was deployed correctly and then through hu-
man error some part of the production release was inadvertently replaced with
the wrong version of a runtime component. This should never happen, but in
the real world, it does happen. The RM function should create release packages

ptg

5.4 The Ergonomics of Release Management 77

that have an embedded and immutable version ID that can be easily retrieved
with established auditing practices. In Chapter 6, “Deployment,” I describe an
incident that occurred when I was the release manager at a large stock exchange
where my techniques for creating package IDs helped to triage a situation where
the world economy was impacted by a change that was made to production
after my release was successfully deployed.

5.3.3 Sending a Release Map with the Release

The packaged release should always contain a list of all the confi guration items
that were delivered as part of a release and developer release notes, product
documentation, and updated help files explaining what is included in the re-
lease. I sometimes call the list of what is included in the release my release map,
because it shows everything that was deployed, including the size in bytes of all
confi guration items along with their respective date stamps. Some people call
this a bill of materials. We should also note that date stamps and sizes can actu-
ally be impacted by minor changes or environment issues that do not actually
threaten the integrity of the release. There are more reliable methods that we dis-
cuss, including the use of cryptographic keys. But still the release package itself
should always ship with an immutable version ID that can used to trace back to
the exact version of the source used to build that particular release.

5.3.4 What Does Immutable Mean?

An immutable version ID means that the package can be identified with an ID
that cannot be overwritten either intentionally or by accident. One way to do
this is to embed the version ID into the binary executable at build time. Embed-
ding version IDs into executables was covered in Chapter 2, “Build Engineer-
ing.” I sometimes call this branding the executable because the objective is to
stamp the binary once and never allow the version ID to be overwritten. If your
release packages and all the configuration items contained in them have version
IDs, you are much closer to being able to create reliable RM practices.

5.4 The Ergonomics of Release Management

In ergonomics, we design the job, tools, and workplace to prevent injury and
any possible type of mistake. Release management is all about ergonomics in
that we try to make it impossible to make a mistake in the RM process which
means that we work towards preventing any type of human error.

ptg

Chapter 5 Release Management78

5.4.1 Avoiding Human Error

Good RM puts a strong focus on avoiding the human error that can sometimes
occur during the RM process. I have worked on teams that called me in specifi -
cally because it seemed that they could not build a release correctly two times
in a row. To solve this problem, I always analyze the reasons for the errors and
then create controls to prevent mistakes from being made again. There were
many reasons for these mistakes that can run the gamut from technical complex-
ity to miscommunication between the people involved with creating the release.

Language Barriers and Ignored Error Messages

I recall one team that missed their deadlines repeatedly over a six-month
period largely because of error-prone RM practices. The manager asked
me to help review current procedures and help the team change the way
that it was working so that it would stop making mistakes. The build used
Ant and Maven on a Sun Solaris platform to create Java SOA services
through packaging the Java applications into a war file that will be ex-
plained further in the next section. I sat with their release manager during
the build and deploy process and observed the work as it was being done.
During this time, I noticed that the technical resource doing the work did
not speak English well. I also noticed that he ignored error messages that
fl ashed across the screen. It turned out that he always ignored them be-
cause he really didn’t know what they meant. Fixing this problem was
as simple as modifying the build scripts to put in a pause and echo out
instructions for the build engineer in simple English that he understood.
So now, this script popped up a simple message that said, “Please look for
any errors on the screen and notify the developer if you see the word er-
ror.” This sounds incredibly simple, but that was all it took for the build
engineer to stop making mistakes during the build process that impacted
the subsequent release packaging.

5.4.2 Understanding the Technology

Release managers need to understand the technology being used to package
their release. In Java, we can have releases packaged as WARs, EARs, and JARs.
There are many other ways to package code, and the release manager needs to
understand the tools for packaging that are commonly used with a particular
technology. For example, packages are often signed with a cryptographic key to
insure that they have not been tampered with and contain a complete manifest

ptg

5.4 The Ergonomics of Release Management 79

describing their contents. These packages can be created by hand using tools
available at the command line. It is more common to create a WAR fi le as part
of the build engineering process (using Ant, Maven, or Make).

5.4.3 Tools from Build Engineering

During the build, source code is compiled into binary confi guration items that
may be runtime components. For example, the Java compiler can create classes
that can be run by the Java Virtual Machine (JVM). It is more common for the
classes to be assembled into a JAR (WAR or EAR) fi le and then deployed into
the runtime environment. Release managers may be lucky enough to get an au-
tomated build procedure from the developers, but they still need to understand
all the related build engineering tools used to create a runtime package. It has
been my experience that the more that a build engineer understands about the
technical details of creating these packages, the more likely that he can work
successfully with the members of the development team. It is also true that this
knowledge helps to prevent human error, which we discuss in the next section.

5.4.4 Avoiding Human Error

The only reasonable way to avoid repeated mistakes in release management is
to automate the release packaging effort. I have seen many RM procedures that
were followed by whoever was in charge of building and packaging the release.
If the procedures were not automated, they were almost always error prone and
far from reliable. I like to take this a step further and create procedures that
avoid any possible human error.

5.4.5 My Own Three-Step Process

It usually takes me three releases to fix a release management process. The first
time, I observe what is being done and I take a few notes, but I always start by
trying to understand the current practices in place. The second time, I ask to do
the release myself with the developer at my side coaching me through the release
process. I always create a checklist and capture screens so that I can do it again
in the future without help. Then, I start to write scripts to automate the release
process and “Bob-proof” (see Chapter 2 for an explanation of “Bob-proofing”)
the RM process. By the third release, we should be using my checklist, although
I usually still need some support and help from the developers. After the process
is documented and automated, I have often given it back to the developers to
manage themselves using my procedures, which are ergonomically designed to
avoid mistakes and provide complete traceability regardless of who runs them.

ptg

Chapter 5 Release Management80

5.4.6 Too Many Moving Parts

I have worked in environments where my own procedures still fell short and I
was not able to fi x the RM process. Usually, this was because there were just
too many parts, and it was impossible to tame the environment into a repeatable
process. Sometimes, it was due to organizational issues that made it impossible
for me to get my job done. This does not happen to me often, but I want to ac-
knowledge that it can happen. I have sometimes felt that I simply became part of
the problem and could not fix a truly broken RM process. These tough nuts are
not common, and usually, I can fix a bad release process in just three releases. It
is also important to fix the communications around the status of a release.

5.5 Release Management as Coordination

Release management is also a coordination function in that it helps to manage
all the tasks and requirements for a successful release. This may involve coor-
dinating the release itself and all the items that are required for a successful re-
lease. Part of this effort is ensuring that you communicate the status of a release
to all affected parties.

5.5.1 Communicating the Status of a Release

I have seen environments where everyone was doing a great job, but just about
nobody knew that to be the case. The communication within the team was poor
and almost nonexistent to the management above them. Poor communication
results in considerable frustration and can undermine the effectiveness of the en-
tire team. The RM process must, at a minimum, provide visibility into the status
of a release. I always communicate to all stakeholders that a release is planned,
and more important, when it begins to be deployed. Then, I always broadcast
the completion of the RM process along with success of the required smoke tests
that we describe in more detail in Chapter 6.

5.5.2 Don’t Forget the Release Calendar

The RM function should also establish a calendar to maintain and communicate
all the pending releases. In practice, I have found that I usually have two cal-
endars. The fi rst is for planned, scheduled releases, and the second for tactical
short-term releases that may occur on a pretty frequent basis. It is not easy to
establish these calendars and keep them updated, but again, the RM function is
essential for the success of any team and you should definitely plan on spending
the resources necessary to establish and maintain an accurate release calendar.

ptg

5.7 Taking Release Management to the Next Level 81

In some cases, this can be done by the change control function in support of
release management.

5.5.3 RM and Configuration Control

Release management also involves coordinating changes to the configuration
that can impact the runtime behavior of a system. Changes to confi gurations
can impact the release just as much as promoting an entirely new release. Coordi-
nating these dependencies can be complex and is discussed further in Chapter 4,
“Change Control.”

5.6 Requirements Tracking

Many organizations need to be able to track requirements from the very be-
ginning of the lifecycle to the fi nal deployment into production. This is often
because these organizations have a compliance requirement to know exactly
what is included with a particular release. They also need to be certain that
they do not miss a requirement. This is sometimes done in a very formal way.
Other times, the project manager or development lead will simply keep a list of
requirements and then document them in the release notes that are delivered
and packaged with the completed release. As a release manager, I have often
had to go to the project managers and tech leads to ask for the release notes. I
also often take a few minutes to make sure that QA is kept advised of exactly
what will be included in each release. Requirements often trigger test cases, and
some requirements tracking tools interface with test case management software
to generate test cases from requirements. Developing end-to-end support of the
software development process is one of the ways that RM adds value to the
organization.

5.7 Taking Release Management to the Next Level

Release management is a function that is continuously growing with continually
improving tools and process. Many of the industry standards and frameworks
provide guidance on implementing these best practices, and we discuss them fur-
ther in Chapter 14, “Industry Standards and Frameworks.” There are also some
major improvements that are becoming increasingly more common.

ptg

Chapter 5 Release Management82

5.7.1 Using Cryptography to Sign Your Code

Signing a release with a cryptographic key, such as MAC SHA1 or MD5, is be-
coming increasingly more common. Many software vendors enable you to verify
the integrity of a downloaded package or patch to the software by checking the
contents of the package against the digital signature used “to sign” the original
source when the package was created. I have personally seen this approach save
me a considerable amount of time by identifying downloaded packages that
were not completely intact and needed to be discarded. Here is how this works.
The original vendor creates the package and then signs the package using his
private key. The package is shipped along with the known public key (that cor-
responds to the private key used to sign the package). A utility is provided that
regenerates the cryptographic key and verifies that it was signed by the original
private key. Using cryptography to sign a release provides a reliable way to ver-
ify that the package has not been altered and will improve the integrity of your
RM process. I intend to include some examples on how to use cryptography
in release management on the supporting website (http://cmbestpractices.com).

5.7.2 Operating Systems Support for Release Management

Many operating systems provide sophisticated mechanisms for verifying update
patches to the operating system itself. Two such examples are the Linux RPM
and YUM utilities. Linux administrators will tell you that YUM includes de-
pendency tracking that is not usually found with RPM and therefore using YUM
is often preferred. You need to be familiar with your operating systems tools and
functions to support release and patch management in a reliable way.

5.7.3 Improving Your RM Process

The RM process adds a lot of value to any organization. You need to be famil-
iar with these best practices and integrate them effectively with the rest of your
confi guration management practices. You also need to be open to continuously
improving as needs arise. Release management can help make your team consid-
erably more effective or it can sabotage your entire project. Most groups fi nd it
best to start with light processes in the beginning and then become more formal
and detailed as needs arise. I believe that the RM process should be reviewed as
part of the change control function (for example, SEPG described in Chapter 4)
and wherever possible, improved by the team to avoid any possible mistakes.
Release management is a powerful function and can help you and your team
achieve great success!

http://cmbestpractices.com

ptg

83Conclusion

Conclusion

Release management is an essential function in confi guration management. You
need to take a pragmatic and realistic approach to establishing RM best practic-
es that meet the needs of your organization in a flexible and reliable way. These
practices may be implemented differently for a corporate IT environment versus
a software product vendor. But in either environment, you want to implement a
release management process that is fast, efficient, and error free! Make sure that
you share your own RM best practices with me on http://cmbestpractices.com.

http://cmbestpractices.com

ptg

This page intentionally left blank

ptg

Chapter 6

Deployment

Chapter Overview

6.1 Why Is Deployment Important? 87

6.2 Where Do I Start? 87

6.3 Practices and Examples 87

6.4 Conducting a Confi guration Audit 91

6.5 Don’t Forget the Smoke Test 92

6.6 Little Things Matter a Lot 92

6.7 Communications Planning 92

6.8 Deployment Should Be Delegated 93

6.9 Trust But Verify 93

6.10 Improving the Deployment Process 93

Deployment is the final step in the code promotion process. Deployment in-
volves taking the packaged release and promoting it into the target environment,
which is likely production or perhaps QA. Deployment is also responsible for
rolling back a promotion if something goes wrong. If you can seamlessly deploy
and roll back if necessary, you will be able to significantly reduce a common
source of risk (and potential outages). Deployment is usually performed by the
operations team, which often has a lot of other responsibilities that need to be
fulfi lled. I like to see deployment be the simplest step in the release process.
This means that all the prior steps of the process must have been successfully
completed. Deployment usually also means that control shifts from the release

85

ptg

Chapter 6 Deployment888666

management team to the operations team, which is usually pretty busy with just
maintaining the current production systems. The operations team is primarily
concerned with keeping the systems running and responding to any events that
occur. Therefore, deployment procedures should be kept as straightforward as
possible. Your release management team needs to create solid deployment pro-
cedures that can be gracefully completed by the operations team. Chapter 14,
“Industry Standards and Frameworks,” discusses the ITIL framework that is
commonly used to establish IT service manage (ITSM). It is common for release
management and deployment procedures to be required to be consistent with
ITIL processes.

In this chapter, we discuss common deployment practices, including staging,
avoiding mistakes, establishing a release depot, and auditing a release that has
been previously deployed. We discuss how to conduct a confi guration audit,
smoke testing after the release has been deployed, confi guration changes that
can impact your release, along with planning for effective communications such
as announcing planned outages and completed deployments. We also discuss
the fact that ideally deployments should be delegated to the operations team and
deployment should always have its own process-improvement feedback process.

Goals of Deployment

The main goal of deployment is to promote a release into production without
any possible problem occurring. Promoting a release should be like turning on a
light switch. If there is a problem with the release, the operations team follows
the deployment procedures to roll back the release so that business can continue
while your tech support team figures out how to solve the problem. I believe that
the capability to gracefully roll back a release is just as critical a goal as pro-
moting a new release into production. Deployment also has another important
goal, and that is to know exactly what is in production at all times and to know
immediately whether any unauthorized changes have been made. My primary
goal in setting up a deployment process is that all changes are tracked and that
promoting a release or rolling back is easy, reliable, and predictable.

Principles of Deployment

The principles of deployment include the following:

● Promoting a release (or backing it out) should be reliable and as simple as
possible.

ptg

6.3 Practices and Examples 87

● Promoting a release (or backing it out) should be completely traceable
with an audit log of all changes.

● Only authorized personnel should be involved with deployment.

● In most organizations, there needs to be a separation of duties between
developers and the team that deploys the release.

● Any unauthorized changes should be detected immediately.

● There should be a well established procedure for checking the versions of
a release in production (or QA).

● The deployment process should be continuously reviewed and improved as
needed.

6.1 Why Is Deployment Important?

Deployment is important because you want to make certain that you can reli-
ably promote a release forward or take a step back and back out a release that
was previously deployed. Done well, deployment should be a “nonevent.”

6.2 Where Do I Start?

I usually start by designing my release management automation to stage a re-
lease in a shared depot. Then, I create reliable automation to promote the release
and back it out if necessary. You want to keep deployment as simple as possible
and always ensure that it can be performed by your operations or systems ad-
ministration team.

6.3 Practices and Examples

The following sections provide practices and examples that illustrate them.

6.3.1 Staging Is Key

I like to stage all my releases in a consistent and repeatable way. That means that
I do most of the real work up front (in the build and release functions), and then
I just load the prepared release package onto the target machine. The release is
preconfigured for production and copied to a specific location, on each machine,

ptg

Chapter 6 Deployment88

which I usually call the depot. In today’s N-tier technology world, I usually
have to stage release packages on a number of machines and promote them all
within the same code promotion window scheduled and approved by the change
control board (CCB). The key is to make steps to promote the release as simple
and fast as possible. There are a number of different ways to set up staging. In
Linux and UNIX, I can usually make use of softlinks, which point to a specifi c
directory or file. Below is a simple example, just to illustrate this approach. The
important point is that shifting the links takes only a few seconds.

6.3.1.1 Example of Staging Using UNIX Softlinks
For example, if I have a system called Equity Trading that is about to be pro-
moted to release 1.2, I might have the directories set up as shown below. In
this example, EquityTrading_Production is a softlink that points to the current
active release. Right now, it is EquityTrading_Release1.1. Note that we still
have the previous release there just in case we had to roll back to EquityTrad-
ing_Release1.0.

ls –lt

lrwxrwxrwx 1 trad EQY EquityTrading_Production -> EquityTrad-
ing_Release1.1
-rw-r--r-- 1 trad EQY EquityTrading_Release1.1
-rw-r--r-- 1 trad EQY EquityTrading_Release1.0

I then stage the release by copying it into the same directory without chang-
ing the link:

cp EquityTrading_Release1.2 <depot-directory>

Then, this directory will look like the following:

$ ls -lt
total 1
lrwxrwxrwx 1 trad EQY EquityTrading_Production -> EquityTrad-
ing_Release1.1

-rw-r--r-- 1 trad EQY EquityTrading_Release1.2
-rw-r--r-- 1 trad EQY EquityTrading_Release1.1
-rw-r--r-- 1 trad EQY EquityTrading_Release1.0

Then, we remove the old link, as follows:

rm EquityTrading_Production

And we create a new link pointing to the latest release:

ln –s EquityTrading_Release1.2 EquityTrading_Production

Now, we have the following:

ptg

6.3 Practices and Examples 89

$ ls -lt
total 1
lrwxrwxrwx 1 trad EQY EquityTrading_Production -> EquityTrad-
ing_Release1.2
-rw-r--r-- 1 trad EQY EquityTrading_Release1.2
-rw-r--r-- 1 trad EQY EquityTrading_Release1.1
-rw-r--r-- 1 trad EQY EquityTrading_Release1.0

Falling back is as easy as setting the links back.

6.3.2 Scripting the Release Process Itself

When the promotion process is complicated, I usually create scripts to move
the links. In practice, I log the current state of the release before I change any-
thing and then snapshot the environment after the promotion is completed. I
can always tell when the release was started and when it was completed. The
entire process is designed to be fool-proof (or as I have described it before as
“Bob-proof”) and fully traceable. This is especially important when the release
is complicated with a lot of extra steps.

6.3.3 Frameworks for Deployment

A number of deployment frameworks are becoming increasingly popular. Some
of them have been around for a long time with varying degrees of success. The
key thing to understand about deployment frameworks is that you still need to
do all the work. This means you have to write the scripts to automate the steps
required for the deployment. The real advantage to using deployment frame-
works is that they give you a comprehensive structure to make it easier to write
and execute the deployment scripts. Most of them also provide the hooks to
update a dashboard so that you always know the status of the deployment. You
will be able to find more information on deployment frameworks on my website
(http://cmbestpractices.com/tools). Deployment frameworks also help prevent
mistakes.

6.3.4 What If Bob Makes a Mistake?

Anyone can make a mistake—even a disciplined and experienced release engi-
neer. I make mistakes all the time (although hopefully not too many during the
deployment itself). But one thing that I can always guarantee is that I will know
exactly what I did at every step of the process. The reason is that I never do a
deployment at the command line. Everything is scripted. I will always know
exactly what I did and when I did it. I can also verify that the correct versions
have been deployed at any time. I may make a mistake, but I can always tell you

http://cmbestpractices.com/tools

ptg

Chapter 6 Deployment90

exactly what I did and that makes it much easier to make certain that I never
make the same mistake twice!

6.3.5 More on the Depot

I usually set up a directory on the production machine called depot, which is
where I copy the releases to that are about to be deployed. This has the addition-
al advantage of providing one place where you can fi nd all the releases staged
for promotion. You need to make sure that you name all the releases in a clear
and consistent way. I usually include the project name, version, and target date
for deployment. This might seem like a lot of extra work, but the reward will be
that your deployment process is completely traceable and reliable.

6.3.6 Auditing Your Release

A confi guration audit involves being able to verify that the confi guration items
(CIs) in production (or QA) are exactly the correct versions that should be there.
It is important to have predefined procedures in place to ascertain the exact ver-
sions of the CIs in production. When bad things happen, this can make your
job a lot easier. I was once told that I had personally stopped the entire world
economy.

The Day That I Was (Erroneously) Told That I Had Stopped
the World Economy

One day, I was called into the office of a senior executive at a major New
York Stock Exchange, where I was working as a release manager. This
gentleman told me that he believed that I had made a mistake that had re-
sulted in a major outage that had actually impacted all the systems on the
trading fl oor. The impact of even a one-hour outage in this environment
was huge. I had previously been told that outages could actually require
that a senior executive would testify before the U.S. Congress. Given the
severity of this incident, I felt extremely stressed and worried whether a
sloppy mistake on my part had really caused so much damage. This pos-
sibility concerned me a great deal, along with the anxiety that soon I might
be looking for a new job. I certainly wanted to know exactly what had
happened.

Reviewing My Own Procedures

I was asked to review my own procedures and make sure that I never
made this mistake again. I asked for permission to work with the opera-
tions staff to examine the release that was currently in production. Because

ptg

 6.4 Conducting a Configuration Audit 91

 6.4 Conducting a Configuration Audit

“Pre-audits” may be done by the CM team. Offi cial audits must be done by an
independent body. That means that the CM team should develop the procedures
to verify that the correct versions of the system are in place. The confi guration
audit should be automated and fully traceable, too. I have worked in places
where we set up an automated check of the environment that told me immedi-
ately whether any changes occurred. Sometimes, these were authorized changes,
sometimes not. I have also worked directly with the audit team to teach them
how to request and understand the results of a confi guration audit. The CM
team partnered with the audit team to review all the systems online to make
certain that there were no version control related problems.

I had created an automated script to conduct the confi guration audit, this
was easy to do. After we examined the production environment, we saw
that there were indeed two wrong scripts currently running in produc-
tion! This meant that the exact same scenario could easily occur again. We
checked a little further and determined that operations had an old version
of a script being used that was overwriting the scripts that I had originally
deployed. The important thing was that we recognized the bug and that
it was still in production! We were able to fi x the problem and prevent
any further incidents from occurring. Our management also saw that our
processes worked.

The Job Interview About Life Support Systems

I once had a job interview in which I was asked to consider a situation
where a member of my own family needed to use a life-support system.
In this scenario, I was asked whether I was confident that my procedures
were reliable enough that I would feel confi dent in doing the release man-
agement for this essential medical device. Of course, there are critical sys-
tems out there, and they do need to have well-established release manage-
ment procedures in place. The same is true of missile and aviation systems.
There are many technology systems that need confi guration management
best practices, and there is no room for mistakes. One of the most impor-
tant key procedures is conducting a configuration audit.

ptg

Chapter 6 Deployment92

6.5 Don’t Forget the Smoke Test

After a release is promoted, the release management team (or sometimes the
operations team) should be able to execute at least one transaction to verify that
the release was successfully completed and the system is up and running. This
is not usually an exhaustive test. More testing is better, although frequently it
is not feasible. Additional verification could be completed by the QA team or a
production support organization. The release management function needs to at
least confirm that the release comes up and can function at a basic level. I usually
partner with the QA team to ensure that the smoke test is reasonable and a good
indication of whether or not the system has come back up after the deployment.
I usually ask the QA team to also recommend some specific tests to confirm that
the expected changes were successfully deployed (and they actually fix the prob-
lem or provide expected enhancements). The best practice here is that CM does
indeed include testing to confirm that the deployment was successful.

6.6 Little Things Matter a Lot

It is important to recognize that small changes are just as important as big
changes. Some organizations will allow a small configuration change without
following all of their release management procedures. This is a bad idea because
changing a confi guration can result in a system outage, just like any other tech-
nical problem. Make sure that you have enough processes in place to prevent
any mistake from occurring that might impact your production systems. For
example, closing a port in production can shut down a system just like any other
change or technical problem. This is sometimes called an interface control, and
it is as important as any other change control.

6.7 Communications Planning

You need to create a communications plan that ensures that all stakeholders
are kept advised on the release management process. This may include an an-
nouncement on when the release is going to be promoted. I usually announce
the target date for the release and then give an update just before we bring the
systems down. I try to leave enough time for someone to contact me just in case
there is a good reason to postpone the release deployment. After the deploy-
ment is completed, I send out another notice advising that the release has been
completed. I always mention the results of the smoke test and the location of
the release notes that explain exactly what changed in the release. Good com-
munications is obviously essential, and you should create a plan for making

ptg

6.10 Improving the Deployment Process 93

certain that you have the right communications procedures in place to support
the release and deployment effort.

6.7.1 Announcing Outages and Completed Deployments

Make sure that you establish a procedure for announcing upcoming outages so
that all of your stakeholders are warned ahead of time when the system will be
unavailable. You also don’t want to surprise people with unexpected changes. If
your communication is good, your team will be much more capable of address-
ing any potential problems as they occur.

6.8 Deployment Should Be Delegated

 Deployment should be the one function that does not stay within the configura-
tion management role. In most environments, it is advisable to get deployment
to a point where the operations team can deploy and fall back to a previous
release as necessary. Ideally, the release management team should help establish
the deployment procedures but then delegate their day-to-day operations to the
team that will be monitoring the system on an ongoing basis. It is true that the
same procedures (or possibly a subset) can be used by developers to deploy code
to development test (sometimes called a test sandbox), QA, or integration test.
But, the actual deployment to production in a mission-critical IT environment
should be controlled and managed by the operations team using the procedures
developed (or at least directed) by the release management function.

6.9 Trust But Verify

It is important to establish procedures that continuously verify that the pro-
duction (or QA) environments have the correct baselines deployed and that all
interface controls are established correctly as well. I recommend that you trust
your deployment procedures but also use automation to verify that no changes
have taken place. I have found this to be an essential best practice that will save
you a lot of time—especially when an unexpected change occurs.

6.10 Improving the Deployment Process

The deployment process should be continuously reviewed and improved as
needed. It is important that incidents and problems be reviewed by the opera-
tions team to ascertain whether any issues have occurred that were related to

ptg

Chapter 6 Deployment94

the release and deployment process. It is also possible that better deployment
procedures can help make the operations and production support teams more
effective. I believe that it is important to accept that there may be mistakes from
time to time, but process improvement is all about making certain that the same
mistake does not happen twice. The ITIL and Cobit frameworks, discussed in
Chapter 14, also provide best practices for deployment.

Conclusion

Deployment should be the smallest of the CM-related functions because most
of the work should be completed in the other five core CM functions. You want
to make sure that you keep your deployment procedures as simple as possible
along with being fully traceable. Ideally, deployment is performed by the opera-
tions team using procedures and automation developed by the release manage-
ment team.

ptg

P A R T I I

Architecture and
Hardware CM

ptg

This page intentionally left blank

ptg

Chapter 7

Architecting Your Application
for CM

Chapter Overview

7.1 Why Is Architecture Important? 99

7.2 Where Do I Start? 99

7.3 How CM Facilitates Good Architecture 99

7.4 What Architects Can Learn From Testers 99

7.5 Confi guration Management–Driven Development (CMDD) 101

7.6 Coping with the Changing Architecture 101

7.7 Using Source Code Management to Facilitate Architecture 102

7.8 Training Is Essential 102

7.9 Source Code Management as a Service 103

7.10 Build Engineering as a Service 103

Confi guration management depends on architecture in a number of important
ways. Unfortunately, this dependency is often overlooked, and that often results
in problems and serious mistakes. I have always believed that architecture was
the Achilles’ heel of configuration management, especially when the application
changes in ways that can adversely impact the established configuration manage-
ment procedures. I have had source code management, automated builds, and
release packaging and deployment mechanisms suddenly stop working because
of “surprise” changes in system architecture. The worst part was that no one

97

ptg

Chapter 7 Architecting Your Application for CM999888

realized that I needed to be kept advised on these changes, and I usually found
out just before the code had to be packaged for a release to production (or QA).
CM best practices must be integrated with the architecture of the application.
The procedures for building, packaging, and deployment are very much im-
pacted by the platform, technology used, and the architecture of the application
being developed. The lesson learned is that CM, in turn, also facilitates good ar-
chitecture. Most applications benefit from being developed with a well-defi ned
architecture, including component design. Source code management practices,
including variant management using streams, helps to design and implement an
effective application architecture. This chapter is about the synergistic relation-
ship between configuration management and systems architecture.

In this chapter, we discuss how CM facilitates good architecture and how
CM needs to learn the architecture of the application itself. We consider what
architects can learn from testers and how testing can be a service to the develop-
ers. I suggest a new paradigm called configuration management–driven develop-
ment (CMDD) and how to cope with a changing architecture. We cover using
source code management to facilitate good architecture using components and
snapshots and why training is essential. It should come as no surprise that we
view source code management and build engineering as a service to the develop-
ers and a critical success factor.

Goals of Architecting Your Application for CM

The primary goal of architecting your application for confi guration manage-
ment is to improve quality and productivity by implementing CM best practices
that are consistent with the architecture of the application. First, you need to
consider the requirements of good configuration management as you design and
implement your application so that changes in the architecture are communi-
cated to those responsible for CM as they are being developed. This approach
helps to ensure that you can employ CM best practices to support the entire
development effort. You also need to embed the version ID into each configura-
tion item and package the application so that these important CM functions can
be successfully completed. Another goal is for CM to support rapid and iterative
application development and thereby improve both quality and productivity.
Developing CM best practices that are consistent with the application architec-
ture will help to improve the application development process. The application
should also be architected to support CM.

ptg

7.4 What Architects Can Learn From Testers 99

7.1 Why Is Architecture Important?

Architecture is essential from two different perspectives. First, the CM support
team needs to understand the architecture of the application to be effective. I
have often found that this is a key risk area that needs to be addressed. If the
CM team does not understand the application, it is very difficult for them to be
effective. Similarly, CM can provide an essential service to facilitate the develop-
ment effort by providing tools and process to support source code management
and build engineering best practices.

7.2 Where Do I Start?

You need to start by evaluating the complexity of the architecture of the applica-
tion that you are working with. Ideally, you will have some development experi-
ence with the application, but this can be tough when you change platforms as
often as I do on a fairly regular basis. Get ready to create example programs in
many different languages! You should also start by identifying what the devel-
opment team can do to help you get up to speed and how you, in turn, can help
facilitate the architecture effort.

7.3 How CM Facilitates Good Architecture

Confi guration management helps facilitate good architecture by providing a
clear and logical structure to help evolve the architecture of the application as
it is being developed. Good source code management strategies include proce-
dures for managing baselines and variants to the code, which are essential for
supporting the development of a robust application architecture. This comes as
no surprise to experienced technology professionals. What is less intuitive is that
the architecture itself may need to be designed for configuration management.
Too often, development fails to consider CM requirements up front, and then
there are no cycles planned or available for considering CM-related require-
ments when designing or implementing the application architecture.

7.4 What Architects Can Learn From Testers

 I remember when the first automated testing tools became available, forever im-
proving the ability of QA teams to check for defects and ensure that the application
worked as desired and expected. I recall that there were some technology profes-
sionals who felt strongly that the best way to test was to consider the application

ptg

Chapter 7 Architecting Your Application for CM100

as a black box and execute test cases without impacting the application in any
internal way. This approach was considered to be more reliable because it mir-
rored the way that people would actually use the application in production.
However, the use of automated testing tools often failed because of a small cos-
metic change to the interface resulting in the QA team having to run all of their
tests by hand. In practice, this meant that getting complete code coverage was
impractical. Soon, we found that allowing the test team to examine the code and
develop test tools that were more reliable resulted in significant improvements in
testing effectiveness. I worked on a number of projects where we instrumented
the code to help make the test tools more reliable. This bothered the purists a
great deal because we had violated their rule that the application should be a
“black box.” But, in the end, it was a lot more useful to be able to push through
a hundred trades in the first hour of testing and then a thousand trades overnight
(for full-regression coverage). We were instrumenting the code to help make the
test tools work and this resulted in a much higher-quality automated regression-
testing suite. This was a big improvement, but it was rare for all the tests to suc-
ceed, and it seemed to take a lot of time to release code. We needed to think of
ways to become more effi cient. We then decided to try moving the test process
to the beginning of the development lifecycle.

Automated Testing in a Trading System

I worked with one application where we had two separate automated test
suites. The fi rst ran for about an hour and quickly gave us an indication
whether the application was working. The second battery was a compre-
hensive set of over a thousand trades that could take almost a day to run.
We regularly built the release and ran the one hour automated test imme-
diately. In practice, it was rare for the longer battery to fi nd a problem, if
the one-hour test was successful.

7.4.1 Testing as a Service to the Developers

My colleagues in the QA team had long established that the release had to be
tested before it was promoted to production. This meant that the developers
worked until the application was completed and then turned it over to the QA
team for testing. We then documented the defects found and sent the release
back to the developers to fix the high-priority issues (known as “blockers”). We
decided to try to offer to run the test tools for the developers on unoffi cial pre-
releases. The developers found that this helped them code much faster, and because

ptg

7.6 Coping with the Changing Architecture 101

the developers themselves depended on the test tools, they stopped making
changes that broke the automated playback. This happened a long time ago, and
today, we have Agile methods such as test-driven development (TDD) that put a
major focus on testing as being integral to the application development process.
I believe that configuration management needs to make a similar paradigm shift.

7.5 Confi guration Management–Driven Development
(CMDD)

Instrumenting the code to help implement the configuration management func-
tions includes creating a mechanism to embed immutable version IDs in the
software being developed. This process is different when you are writing C/
C++ code versus Java or some other technology. The team designing the appli-
cation architecture needs to consider these issues just as it considers any other
technology requirement. Packaging the application also depends on the applica-
tion architecture. You may be using libraries created using GNU Make or JARs
(EARs or WARs) to hold Java SOA applications. Regardless of the technology,
application architecture can impact the configuration management functions. It
is important to get the requirements for configuration management on the table
and under consideration by all affected members of the team. Just as many Agile
practitioners are finding that TDD can produce better systems, I believe that the
development team needs to be trained to consider the architectural requirements
for implementing CM best practices.

7.6 Coping with the Changing Architecture

I usually get recruited to work in environments where the CM process is really
broken. The technology leaders usually understand that they have a problem
because the releases are often late and usually have to be redone several times
because of human error. The same leaders often do not understand why there
is a problem and what needs to be done to fix it. This type of situation is fun
for me because I get a chance to really show that CM best practices can be cru-
cial and really help improve the overall development effort. However, this also
means that I have worked in a number of places where the organization had
serious problems that led to this situation. One common reason was that the
architecture was changing significantly and this resulted in a lack of stability.
Poor communication between the groups was often part of the problem. Leslie
Sachs discusses communication and personality in Chapter 11, “Personality and
CM.” There was also pressure to make major technology changes, sometimes

ptg

Chapter 7 Architecting Your Application for CM102

because of poor choices that were initially made at the beginning of the project.
Now that the team was playing catch-up, there was still poor communication
and planning for the changing technology. The fi rst thing that we need to dem-
onstrate is how CM can help solve this problem. One way is to provide a frame-
work for organizing code into components, baselines, and snapshots.

7.7 Using Source Code Management to Facilitate
Architecture

Complex technology is often managed better by breaking the problem into
smaller self-contained units. In some organizations, it has become popular to
break tough technology efforts into smaller, more manageable components. Or-
ganizing the code into self-contained and well-defined components (each with its
own well-defi ned interface) can help to simplify the work that needs to be done.
I have worked with modern source code management tools that enabled me to
facilitate the development of application architecture by the efficient use of com-
ponents, organized in streams. The streams themselves could be organized in a
hierarchical fashion and was a very power way to represent the architecture of
the system that we were trying to build. We discuss the use of streams in Section
1.3.7. Some of these techniques can get rather complicated. Training develop-
ers in how to use the source code management tools effectively can significantly
help make the management of components, their interfaces, and baselines much
more manageable on an ongoing basis. (In some source code management tools,
snapshots are created to create baselines across one or more components.) Es-
tablishing change control can further help take a complex technology solution
and make it more manageable, thereby improving both quality and productiv-
ity. This requires tight collaboration between the SCM team and the develop-
ment team.

7.8 Training Is Essential

In Chapter 1, “Source Code Management,” we discussed the importance of
training in source code management. I made the point that training is fi gura-
tively the hill to die on—meaning that you need to insist that your management
support and provide suffi cient resources for delivering effective training. That
sounds simple enough, but I have found that it can be tough to gain management
support for training. It is less important whether the training is formal class-
room training or ad hoc briefings on a whiteboard as long as the method pro-
vides the necessary content and meets the needs of the organization. Technology

ptg

103

Conclusion

professionals taming a complex architecture benefit greatly from the features of
a robust source code management system, but they will likely only know how
to maximize these features if they receive adequate training. I usually provide a
fasttrack training approach to getting developers into the source code manage-
ment tools quickly along with a more formal training offering (such as two days
hands-on) and then an advanced workshop that I may give on an as-needed
basis. Using source code management to support complex architecture usually
involves employing the advanced features of a source code management tool.
Advanced training is essential in helping the team to manage the development
of a complex architecture.

7.9 Source Code Management as a Service

Source code management is a service function and I always insist that members
of my team regard the developers as internal customers. (I usually call my team
“release management services” to emphasize this focus on service.) This really
just means that we provide excellent support by helping developers to use the
source code management tools effectively and with facilitating the build process
by setting build standards. To do this, my team needs to understand the recipro-
cal relationship, the technologies involved and the underlying architecture.

7.10 Build Engineering as a Service

Similarly, automating the build means that developers can make small sets of
changes and then rapidly build and test the application. This helps improve
both quality and productivity. One way to do this is to create a number of build
machines that can be used on an “on-demand” basis. The developer may be
working from a laptop using an IDE to code, compile, and unit test. But with
the right technology and processes, the build can be run from a larger machine
and then promoted to the test area as needed.

Conclusion

Confi guration management is impacted significantly by the application archi-
tecture, and implementing complex architectures is much easier done with CM
best practices in place. The CM team needs to communicate its requirements
to the development organization and the technology leadership needs to keep
in mind the importance of working with the CM team as a full partner. Just as
there is test-driven development, today there needs to be configuration manage-
ment–driven development.

ptg

This page intentionally left blank

ptg

Chapter 8

 Hardware Configuration
Management

Chapter Overview

8.1 Why Is Hardware CM Important? 106

8.2 Where Do I Start? 107

8.3 When You Can’t Version Control a Circuit Chip 107

8.4 Don’t Forget the Interfaces 108

8.5 Understanding Dependencies 108

8.6 Traceability 108

8.7 Deploying Changes to the Firmware 109

8.8 The Future of Hardware CM 109

Hardware configuration management is often overlooked and undervalued. The
truth is that hardware components need to be version controlled just like source
code. The challenge is that engineers can’t easily check a circuit board into a
source code management tool, and there is often no easy way to version control
changes to a hardware component. Another problem is that engineers may be
trying to troubleshoot a problem at a customer site without having an easy way
to confirm the version of the hardware component or even the firmware loaded.
However, despite these obstacles, profi cient hardware configuration manage-
ment is essential for your team’s success. You need to have procedures in place
to perform configuration identification, change control, status accounting, and
confi guration audits on hardware just like software. It is obvious that software

105

ptg

 Chapter 8 Hardware Configuration Management111000666

loaded onto a hardware chip (such as fi rmware) needs to be under version con-
trol just like any other piece of software. The rest of this chapter focuses on how
to address the requirements for hardware CM.

This chapter discusses how to handle configuration management for hard-
ware, including circuit chips and all of their supporting artifacts (such as design
specifi cations and fi rmware). We discuss handling interfaces, dependencies, and
the often-required traceability and the procedures necessary to support deploy-
ment. I do not understand why hardware CM is so often overlooked, and I
feel strongly that we need to focus more on this essential area of configuration
management.

Goals of Hardware CM

The goal of hardware management is to always know which version of the hard-
ware component is in use (or being tested). You also need to be able to track
any changes to the hardware and control changes to the interface and external
dependencies that might affect the operation of the hardware device. The goal
of hardware CM is to version control the hardware just as you would version
control software. A closely related goal of hardware CM is to control environ-
mental changes that may impact the release management process. Ultimately,
the goal of hardware CM is to help facilitate the development of hardware in a
way that enhances productivity and quality.

8.1 Why Is Hardware CM Important?

Many people are alive today because of medical instrumentation, including
pacemakers, computer-driven medical test equipment, not to mention the de-
fi brillator that we carry on the ambulance where I volunteer as an emergency
medical technician. Getting the wrong version of any circuit chip or the hard-
ware to support it could have disastrous consequences. Yet frankly, hardware
CM is routinely overlooked. I don’t understand the reason for this omission,
as engineering has always led the way in terms of every other aspect of quality
management and testing. When I consult with engineers, I often find that they
have no procedures in place to track versions of hardware or even the software
that is downloaded to make the device function correctly. This is clearly an area
that needs a lot more attention in the future.

ptg

8.3 When You Can’t Version Control a Circuit Chip 107

8.2 Where Do I Start?

For the most part, the procedures used for software CM can be applied to hard-
ware. There are a few differences, starting with the fact that I cannot check a cir-
cuit board into a version control system. Generally, I suggest that engineers get
started by putting all the design documents under version control, just as if they
were source code. But there is much more that is required to just get started. For
one thing, all hardware devices need a version ID, just like software and a clearly
defi ned procedure to retrieve the version ID (which is essentially a configuration
audit on a circuit chip). I have seen situations where the engineers did not know
(and could not ascertain) the exact version of a circuit chip that was on a test
device already deployed to a customer site. This complicated troubleshooting
the device and adversely impacted both quality and productivity. Make sure that
your engineers know up front that you are expecting version IDs to be imprinted
in the device. If this is impossible, they need to give you some equivalent way to
ascertain exactly which version of the device is used. This is essential and your
product will suffer significantly if you cannot definitively ascertain the exact ver-
sion of the device (and any software loaded onto the device).

8.3 When You Can’t Version Control a Circuit Chip

Hardware CM starts with version controlling the design documents used to
create the hardware component. The design documents should be version con-
trolled just like any other confi guration item, but in this case they represent
the hardware device itself. Version controlling the design documents should al-
ways be the fi rst step in hardware configuration. These documents need to have
unique version IDs and should clearly show the version ID imprinted on the
hardware device. In CM terminology, we say that both the hardware device and
the design documents are confi guration items.

8.3.1 A Confi guration Item by Any Other Name

In CM, you always version control all the confi guration items used to create
the release. Typically, CM experts consider a configuration item to be a com-
ponent that serves an end-user purpose. This is explicitly stated in some of the
industry standards that define the Software Configuration Management process,
including ISO 10007. For example, documents, code, configuration files, and
all resulting packages should be treated as confi guration items. Sometimes, it
will serve an end user function to consider confi guration items at a much fi ner
granularity, including config fi les, scripts, and documentation.

ptg

 Chapter 8 Hardware Configuration Management108

 8.3.2 Version Control for Design Specifications

While the design document needs to be controlled (and linked to the respec-
tive hardware device), changes to the document itself also need to be version
controlled. That means that there may very well be several versions of the docu-
ment for one version of the hardware device itself. In some cases, the hardware
device may have programmable memory that may be able to run programmable
instructions that should be promoted as a release. In fact, all the confi guration
items should be traced and handled just like any other source code component.
Even though the programmable instructions may be running on a programma-
ble device (such as an eprom), they should be version controlled just like any
other confi guration item.

8.4 Don’t Forget the Interfaces

The precise interface of each component must be ascertained and documented.
Changes to the interface should be managed through the change control process.
This means that requests for changes (RFCs) are created and either approved or
rejected by the change control board (CCB). It is common for hardware compo-
nents to have specific interface dependencies that must be managed and control-
led by a well-defined change control process.

8.5 Understanding Dependencies

Changes to one component may have a downstream impact on another configu-
ration item. It is common for changes to one component to require that changes
to another component be handled and controlled to account for the dependen-
cies between configuration items. It is also common to have a situation where
only some of the dependencies are understood (and of course, controlled). If a
change occurs that results in an unexpected impact on another configuration,
the dependency should be documented and controlled from that point forward.

8.6 Traceability

Traceability is a key goal of hardware confi guration management. You need to
be certain that you can account for all changes to confi guration items, whether
they are documents, source code, or hardware components. This means that all
changes should be traced to RFCs or other change requests (CRs) to who author-
ized the change and exactly when the change was carried out. Every production

ptg

109Conclusion

release must include release notes that indicate exactly what changes are in-
cluded whether they be hardware or software related.

8.7 Deploying Changes to the Firmware

Changes to firmware should be handled as a packaged release that can be traced
just like any other changes to configuration items. It is a best practice to handle
the deployment of changes to firmware as if it is a change promoted to a release
of code. In this sense, you can think of promoting the changes to firmware to be
similar to promoting a release to production (or QA).

8.8 The Future of Hardware CM

Hardware CM has been given short shrift, but really deserves more attention.
Future standards should support hardware CM and specify that all hardware
configuration items be fully identifiable and traceable, just like software configu-
ration items. Aside from identifying confi guration items, hardware CM should
also include change control, confi guration audits, and tracking the evolution of
the hardware CI throughout its lifecycle (known as hardware status account-
ing). The ITIL framework is also highlighting the importance of asset manage-
ment, which is indeed an industry best practice. We need to support hardware
CM as being just as important as software configuration management.

Conclusion

Hardware configuration management is often overlooked. Even worse, many
technology professionals do not know how to handle hardware configuration
management. Technology professionals need to control changes to hardware
just like they control changes to any other confi guration item. Obviously, tech-
nical issues and requirements must be addressed to handle promoting fi rmware
changes to hardware. Versions of hardware confi guration items must be con-
trolled just like any other confi guration item. In addition, you need to analyze
and control the interface dependencies for hardware configuration items. Hard-
ware CM is a full lifecycle discipline that enhances quality and productivity just
like software configuration management.

ptg

This page intentionally left blank

ptg

P A R T I I I

The People Side of
CM

ptg

This page intentionally left blank

ptg

Chapter 9

Rightsizing Your Processes

Chapter Overview

9.1 Why Is Rightsizing Your CM Processes Important? 115

9.2 Where Do I Start? 115

9.3 Verbose Processes Just Get in the Way 116

9.4 SPINs and Promoting the CMM 117

9.5 Disappearing Verbose Processes 117

9.6 The Danger of Having Too Little Process 120

9.7 Just-in-Time Process Improvement 120

9.8 Don’t Overengineer Your CM 120

9.9 Don’t Forget the Technology 121

9.10 Testing Your Own Processes 121

9.11 Process Consultation 122

9.12 Create a Structure for Sustainability 122

Rightsizing your CM processes is all about focusing on exactly what you must
accomplish to get the job done. It’s also true that lasting process improvement
doesn’t usually happen unless there is some structure established, including a
strong change agent providing leadership and direction. Process improvement
can take on many shapes and forms. I have seen very extensive formal process
engineering efforts using the SEI’s Capability Maturity Model (CMM), span-
ning years of effort, and I have seen very modest efforts that were coordinated in

113

ptg

Chapter 9 Rightsizing Your Processes111111444

short cycles, often called sprints, with modest improvement milestones set and,
often, actually even met. I always try to focus on developing just enough process
to get the job done without any extra ceremony. Some organizations develop
a culture for process improvement and begin a journey that becomes a central
part of everything that they do. I have seen this especially in organizations that
adopted Six Sigma as a process improvement methodology. This business proc-
ess improvement methodology had its roots in work done at Motorola and used
many of the techniques developed by W. Edwards Deming. There are benefi ts
and challenges with each of these approaches and the most important factor
is that you need to rightsize your processes to meet your goals and priorities.
Of course, like many other goals, that is frequently easier said than done. This
chapter describes how to navigate through this journey.

This chapter starts by discussing the fact that verbose processes just get in the
way, creating a lot of energy (and motivation) to avoid the processes that just
don’t seem fair and realistic. We take a step back and recall the SEI’s Software
Process-Improvement Networks (SPINs) that were established to promote the
CMM. The verbose process models have lost much of their support in favor of
Agile processes and iterative process models, including OpenUP, which is part of
the Eclipse Process Framework (EPF). The familiar “Lean” approach has been
taking the industry by storm, although I have to also mention that there is obvi-
ously a danger in having too little process, which leads us to my own approach,
which I call just-in-time process improvement. Closely related is the danger of
“overengineering” your CM process which means that you have overly complex
CM processes that may work, but are not optimal for your entire team. We
discuss the importance of testing your own process, old-fashioned process con-
sultation and the need for transparency, and creating a sustainable structure for
supporting process improvement.

Goals of Rightsizing Your CM Processes

Whether you embrace an organizational transformation or a limited tactical
effort to fi x a specifi c problem, process improvement must be focused on es-
tablishing and meeting the right goals. I don’t usually get to spend much time
on this issue because most organizations call me in when they have a serious
CM-related problem that needs to be immediately addressed (or bad things can
happen). Sometimes, I have been very successful, and other times, I have felt
pulled right into the deep abyss of the problem itself. For example, I may be
asked to fi x the release management process, but the real problem is that the
technology architecture is so brittle (e.g., too many moving parts) that the re-
lease process just can’t be easily changed, and the organizational culture makes
it nearly impossible to achieve any lasting positive results. I have learned to look

ptg

9.2 Where Do I Start? 115

carefully at the big picture and focus on achieving the goals that make sense
from a pragmatic, business, and technical perspective. Your goal should be to
realistically evaluate your business priorities and decide just how much process
your organization needs and, for that matter, can tolerate. Too much process
is just as bad as too little, and you need to take a close look at exactly what the
right balance should be.

9.1 Why Is Rightsizing Your Processes Important?

Having too much process is just as bad as not having enough. I have seen many
process-improvement efforts fail because the processes just required too many
steps to complete. In my experience, the people defining the process had never
been in the trenches a day in their lives and often did not understand the “hands-
on” practical side of what they were busy defi ning a process for. Many Agile
enthusiasts refer to the process rigor as “ceremony” (which I find quite descrip-
tive). You don’t want too much ceremony, but you do want to make sure that
you have enough controls in place to avoid costly mistakes. Rightsizing your
processes is important because you need to have just enough process to get the
job done effectively and avoid costly mistakes.

9.2 Where Do I Start?

You need to start by defi ning your goals and priorities in a clear and pragmatic
way. You also want to defi ne the risks involved and set your priorities accord-
ingly. Make sure that you also start by communicating with the key stakehold-
ers in your organizations. Rightsizing your processes is a “team sport,” and you
need to consider who you want carrying the ball to make the right choices and
help you achieve success.

Process Improvement and Being Blind

I have often explained to my colleagues that I discovered the need for proc-
ess as a teenager trying to travel alone in NYC armed only with my white
cane and a good sense of hearing. I was born with a severe visual handicap
that could not be corrected with the existing medical procedures of the
day, and I had to wait many years for the laser surgery that I needed to
be perfected. During my childhood, high school, and years into college, I
could see only shapes and shadows, although there were times when I was
able to see well enough to read for short periods of time. I did most of my

ptg

Chapter 9 Rightsizing Your Processes116

9.3 Verbose Processes Just Get in the Way

The fastest way that I know of to fail in process improvement is to establish a
ridiculously verbose process that introduces layers of required steps that are un-
necessary and just can’t be defended as adding value. Yet, many organizations
suffer from this exact approach. In these environments, the change agent wins
a temporary coup of forcing the organization to follow a process that involves
many extra steps and documentation that is just not necessary or even advisable.
I have seen this happen despite lots of resistance when the project was sponsored
by a very senior manager who had considerable positional power. Because there
was no one there to oppose, the team scurried to figure out what they had to do
to comply with the requirements of the process. Verbose processes waste energy
and are simply not sustainable. As soon as that senior manager moves on to his
or her next assignment, the organization reverts quickly back to the way of life
as it was before the ineffi cient processes were forced on them. This was exactly
the well-deserved criticism with some of the fi rst efforts at implementing the
CMM in NYC fi nancial services fi rms. These efforts rarely lasted beyond the
tenure of the senior manager who sponsored them.

reading using the Library of Congress talking books and tapes. However,
my eyes would fatigue quickly, and I would constantly get eye infections
(especially during final exams) that would leave me functionally blind. My
trip into NYC to see my ophthalmologist was usually exciting. I quickly
learned that crossing Fifth Avenue with a white cane and no real usable
vision required that I had previously planned out my journey street by
street, because some corners were easier to navigate than others. Process
improvement for me meant fi guring out whether I could master the traffic
patterns more easily from the northwest corner or the southwest corner,
and making a mistake meant dealing with irate cabbies who never seemed
to understand my white cane was a clue that I could not see them.

My First CMM Experience

The Capability Maturity Model (CMM) framework from the Software
Engineering Institute at Carnegie Mellon was one of the first and most
comprehensive models for assessing and improving processes. The CMM
was followed years later by the Capability Maturity Model Integrated
(CMMI). Many organizations have successfully implemented the CMMI

ptg

9.5 Disappearing Verbose Processes 117

9.4 SPINs and Promoting the CMM

I have been a proud member of the NYC Software Process-Improvement Net-
work (sponsored by the SEI) for many years. The original purpose of the SPINs
was to promote the use of the CMM, and in the early years, we had many NYC-
based firms working to implement the CMM. Process luminaries, such as Watts
Humphrey, were among the excellent speakers at the SPIN meetings, while tech-
nology professionals came to network and share best practices for improving
their processes—including implementing the CMM. Years later, almost all the
members are focused on Agile practices (a few focus on Six Sigma and Lean),
and almost none even consider the CMMI. For many organizations, the CMM
journey was very painful and left them completely opposed to such efforts. This
is unfortunate because the CMM contains a lot of wisdom and excellent best
practices. In some ways, the Agile movement has been a reaction to what was
perceived as verbose ineffective process-improvement efforts.

9.5 Disappearing Verbose Processes

Verbose processes don’t add much value, and most organizations have long
since abandoned them as an acceptable approach. I have heard senior manag-
ers emphatically insist that they would block any process-improvement effort
that involved additional red tape. Unless you are contractually required, most

(and its predecessor CMM) in a number of its forms (now called constel-
lations). At its core, the CMMI is a tool for assessing an organization’s
process maturity. One problem that I have seen is that many people focus
on the maturity model (levels 1–5) instead of the process areas (or what
we used to call key process areas or KPAs). The original CMM was also
presented in a rigid fashion, with many process gurus insisting that the
KPAs at one level had to be completed (which meant that you could not
skip levels) before the processes at another level could be started. This was
often both unrealistic and unnecessary. For example, the original CMM
framework called for subcontract management to be implemented before
peer reviews and establishing a training program (both level 3 KPAs). In
practice, I often found that peer reviews were a great place to start with
process improvement, and training for confi guration management was
non-negotiable (especially when the source code management tool was
hard to use). In practice, I often found that efforts to implement the CMM
were at very high risk for failure.

ptg

Chapter 9 Rightsizing Your Processes118

companies look for the process-improvement methods that involve minimal cer-
emony. In this spirit, Agile processes have become extremely popular in many
circles.

9.5.1 Agile Processes Just Work

The Agile Manifesto (http://agilemanifesto.org) lists the basic Agile values, in-
cluding the importance of focusing on the following:

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

●

Responding to change over following a plan

In practice, Agile recognizes that establishing and tracking requirements is
extremely difficult. Awareness of these challenges is essential because many de-
velopment efforts fail as a result of requirements not being well understood.
In addition, there is often no practical approach for effectively dealing with
requirements ambiguity, not to mention the inevitable problem of requirements
changing. However, Agile also has its own challenges, including the diffi culty
of scaling to large organizations and harmonizing with required non-Agile ap-
proaches. Agile practitioners rightly feel that you become Agile as opposed to
adopting Agile practices. As such, going Agile is a journey that changes you
and your development team in many important ways. Still many organizations
feel strongly (and may have regulatory requirements for) about maintaining a
waterfall lifecycle with well-established requirements specifications, functional,
and design phases. What’s needed is a practical and pragmatic approach that
focuses on the appropriate balance. One popular Agile/iterative approach has
been the Unified Process.

9.5.2 Open Unifi ed Process

The Open Unifi ed Process (OpenUP) has itself evolved over time. I am resisting
going into the history of the Unifi ed Process (and its open source implementa-
tion known as OpenUp) in this book, and instead will discuss its evolution on
the supporting website. The Unified Process is iterative, but curiously supported
by many documents (known as artifacts). Too often, people believe that they
are required to include more artifacts than are really necessary (making this
approach more verbose than necessary). But the organization and topology of
the OpenUP documents is excellent, and many organizations rely heavily on the

http://agilemanifesto.org

ptg

9.5 Disappearing Verbose Processes 119

Unifi ed Process in one of its many forms. It has often been said that the key to
success with the Unifi ed Process is to use only the artifacts that are absolutely
necessary and to guide and limit your selection by repeatedly asking yourself
this question: What bad thing could happen if we do not include this artifact?
Many people implement OpenUP using the Lean principles that are described
in the next section.

9.5.3 Getting Lean

Mary and Tom Poppendieck’s work on Lean Software Development has felt like
coming home for me in a number of important ways. First, it’s no surprise that
they mention W. Edwards Deming in their work, and his influence is clear. For
me personally, there was also a déjà vu experience of feeling like I was listening
to my father-in-law, Benjamin K. Sachs, to whom this book is dedicated. My
father-in-law worked in engineering and manufacturing throughout his career
and put most of these Lean principles into practice as part of both his company
and his personal life. Briefly, the Poppendieck’s excellent work mentions the
principles of

● Eliminate waste

● Amplify learning

● Decide as late as possible

● Deliver as fast as possible

● Empower the team

● Build integrity in

● See the whole

9.5.4 An Extremely Brief Description That I Hope Motivates
You to Take a Closer Look at Lean Software Development

In a Lean approach, you want to avoid unnecessary features and avoid speci-
fying requirements prematurely. And, you definitely want to build in testing
from the beginning of the effort. Learning is essential and should be coupled
with making good use of the scientifi c method—that is, establishing a hypoth-
esis, testing, and documenting your findings. You then implement the best re-
sults based on your scientific study, along with following and improving stand-
ards. You also commit to building quality in from the beginning and deferring

ptg

Chapter 9 Rightsizing Your Processes120

commitment—that is, you want to make decisions at the last responsible mo-
ment. Bringing results to market quickly is essential, as are trying to balance
rapid delivery, high quality, and low cost. From an interpersonal perspective,
Lean encourages you to work as engaged, thinking people who thrive on pride,
commitment, trust, and applause, along with effective leadership. Finally, im-
proving the system needs to focus on examining the system as a whole. The Lean
approach is popular among both Agile and non-Agile practitioners. Although
I have focused on the fact that it is essential to not have too much process, it is
also true that too little process usually results in mistakes and problems that can
be extremely expensive in terms of both quality and productivity.

9.6 The Danger of Having Too Little Process

Having too little process means that you will probably make the same mistakes
over and over again. You also won’t have a repeatable and reliable way to
achieve the desired results. Taking a risk-based approach is an excellent mid-
dle ground, with a strong focus on heavy processes where a mistake could have
disastrous and expensive consequences. For example, most people won’t ob-
ject to developing and tracking requirements carefully for missile systems and
life-support systems, where a missed requirement could have disastrous conse-
quences. Having too little process means that unnecessary mistakes can happen
with, often, unacceptable consequences. So, what exactly is the right balance? I
believe that it can be described as just-in-time process-improvement.

9.7 Just-in-Time Process Improvement

In just-in-time manufacturing, the processes are established and understood to
the point where the factory receives all of its required parts in exactly enough
time to be used efficiently without delay or extra costs associated with warehous-
ing an unnecessary depot of materials. Just-in-time process improvement means
that you correctly balance your goals and objectives so that you have exactly the
amount of process necessary to have efficient, reliable, and repeatable processes
without waste due to extra, unnecessary steps. Many Agile practitioners (among
others) call this having just enough ceremony to have effi cient processes.

9.8 Don’t Overengineer Your CM

Similarly, you do not want to overengineer your confi guration management
processes. I have frequently seen development teams that had branching schemes

ptg

9.10 Testing Your Own Processes 121

that were impossibly complicated to follow. Sometimes, code was actually
“lost” out somewhere in n-dimensional branching space, because the code was
checked into the source code repository, but no one really knew which branch
it was on. Someone on the team had gotten the hang of branching, and then
went and overused branching, with the result being that no one else knew how
to follow the resulting convoluted branching process. It is usually a lot better
to keep things simple. This is a good example where “less is more.” You don’t
want to overengineer your branching strategy. We have already discussed some
branching approaches that work well, and my colleague Steve Berczuk (with
Brad Appleton) discussed branching patterns in his excellent book Software
Confi guration Management Patterns: Effective Teamwork, Practical Integra-
tion (Addison-Wesley, 2003).

9.9 Don’t Forget the Technology

Rightsizing the process also needs to be in alignment with the technology in-
volved. Processes for a mainframe may be quite different from those used in the
distributed world of UNIX/Linux (and even Windows systems). One reason that
many process engineers fail in this respect is that they lack adequate technical
expertise to create effective processes. (My comments might ignite a vigorous
debate about whether process engineers need to be technical and hands-on. I
will be happy to host that debate on the website supporting this book. Be fore-
warned, though, that I will take the position that process engineers are much
more effective when they do know the technology and have the experience of
being hands-on and experienced.) I have seen change control and release man-
agement processes that were just entirely not realistic. This simply motivated the
technology professionals to work around the established processes. I will talk
more about this in Chapter 10, “Overcoming Resistance to Change.” But, I will
make the case that the process needs to be in close alignment with the technol-
ogy and the technology requirements of the team impacted by these decisions.

9.10 Testing Your Own Processes

Rightsizing your processes also requires that you test your own processes. This
means that you not only need to trust but actually verify that your process meets
your goals. You also need to reconfi rm that you have set the right goals. This
is particularly important because it is common for the journey itself to result
in you learning more about the effort along the way—the goals and priorities
as you first understood them may have evolved into what you now know to be
more correct and appropriate for the situation.

ptg

Chapter 9 Rightsizing Your Processes122

9.11 Process Consultation

When I first started learning about industrial psychology, process engineering
was called process consultation, and the assumption was that the process guru
would collaborate with the people who would actually use the process. These
folks were usually business experts who were subject matter experts in their own
area of focus. I miss that traditional collaborative nature of process engineering.
Today, we look for process x masters and people who have passed certification
exams. Although I absolutely value the wisdom of all these frameworks for
process improvement, I also believe that we need a fundamental back-to-basics
approach. I believe that process improvement must be collaborative and include
input from those who are affected by the processes that are implemented. You
also need leadership and direction. When I do a confi guration management as-
sessment, I always listen to the input from stakeholders on their existing prac-
tices. I always learn something new on each engagement—even when the team
has bad processes. But, my core approach is to be collaborative and do my best
to include the views of the people who will be impacted by the processes that we
implement. This has the additional advantage of providing transparency with-
out the appearance of being superficial.

9.11.1 Transparency That Is Genuine

I have been in organizations where senior management announced the new
process initiative with much fanfare and excitement. These announcements were
not always well received, and many people questioned whether the organization
was really being open. Providing transparency is usually a good idea and usually
results in better results for the organization.

9.12 Create a Structure for Sustainability

 The minute that you have finished, it is usually time to review and revise your
processes again! This is because the environment changes, and therefore your
requirements will change, too. This is not a bad thing at all. The lesson learned
is that you not only need to create effective processes, you also need to establish
a mechanism for evaluating and updating the processes themselves. I usually
recommend that organizations establish change control for the processes them-
selves. This group is usually called a software engineering process group (SEPG)
and is discussed in Chapter 4, “Change Control.” This is important, because
without a mechanism for managing change, processes will quickly become ob-
solete, and then everyone will stop following them. Processes need to be sustain-
able and continually improved.

ptg

123Conclusion

Conclusion

Rightsizing your processes is all about choosing the fi rst things fi rst and focus-
ing on your goals and priorities. Too much process is just as bad as too little. In
some situations, formal processes with lots of ceremony are entirely appropri-
ate, whereas in other scenarios, the processes really need to be agile and lean.
Your approach should be collaborative and sustainable. The key is to rightsize
your processes in a pragmatic way that fits your needs precisely.

ptg

This page intentionally left blank

ptg

Chapter 10

Overcoming Resistance to
Change

Chapter Overview

10.1 Why Is Overcoming Resistance to Change Important? 127

10.2 Where Do I Start? 127

10.3 Matching Process to Culture 127

10.4 Mixing Psychology and Computer Programming 129

10.5 Process Improvement from Within 129

10.6 Picking Your Battles 131

10.7 Fostering Teamwork 131

10.8 Why Good Developers Oppose Process Improvement 132

10.9 Procedural Justice 132

10.10 Input From Everyone 132

10.11 Showing Leadership 133

10.12 Process Improvement People May Be the Problem 133

10.13 Combining Process and Technology Training 134

10.14 Listening to the Rhythm 135

10.15 Processes Need to Be Tested 136

125

ptg

Chapter 10 Overcoming Resistance to Change111222666

10.16 Baby Steps and Process Improvement 136

10.17 Selling Process Improvement 137

10.18 What’s in It for Me? 137

10.19 Process Improvement as a Service 137

10.20 Guerrilla Tactics for Process Improvement 138

Overcoming resistance to change can be difficult to achieve. Many well-inten-
tioned process-improvement efforts fail simply because there are enough people
who fear change of any kind and will work hard to block what they believe
might threaten the status quo. Sometimes, implementing a change, such as im-
plementing CM best practices, can feel like trying to move a mountain. There
are also times when you are very lucky if your colleagues block change that is ill
conceived and unlikely to result in positive improvements. Resistance to change
might not seem rational, and it is usually hard to diagnose why you are running
into resistance. Sometimes, you might need to engage in guerrilla tactics yourself
to bring about lasting change. This chapter is all about how to recognize and
address resistance to change.

In this chapter, we discuss tactics for overcoming resistance to change, in-
cluding matching process to culture. I describe my own efforts to mix psychol-
ogy and computer programming and starting process improvement from within,
picking your battles, and fostering teamwork. Everything that I discuss in this
chapter has come from my own experience working to implement process im-
provement, especially CM best practices. We also consider the valid reasons
why good developers oppose process improvement and the essential construct
of procedural justice. We consider best practices such as incorporating input
from everyone while showing leadership, and why process improvement people
themselves may be the problem. We also look at combining process and tech-
nology training. I describe my own method of “listening to the rhythm,” testing
your processes and how to achieve process improvement via baby steps. I also
describe the importance of selling process improvement and explaining to your
colleagues how process improvement will make their jobs easier. This chapter
ends with a discussion about process improvement as a shared service and, when
all else fails, “guerrilla tactics” for process improvement.

Goals of Overcoming Resistance to Change

The goal of overcoming resistance to change is to identify the forces that are
blocking process improvement and, more important, their underlying motivation
to block change. Overcoming resistance to change is very much about designing

ptg

10.3 Matching Process to Culture 127

strategies to help the team overcome the forces impeding process improvement.
It’s also about recognizing legitimate reasons for opposing change and address-
ing valid concerns where they exist. At times, it’s also about forcing the team to
embrace change, even though they may be kicking and screaming all the way.
Most of all, you need to be careful to pick the right type of intervention to suc-
cessfully bring about lasting change.

10.1 Why Is Overcoming Resistance to Change Important?

On many occasions, I was able diagnose why a particular team could not func-
tion correctly or was making many painful mistakes. Unfortunately, I have not
always been able to convince the key players that they needed to change the
way that things were being done. There are lots of good reasons for that. This
chapter is important because even if you have the best tools and process, you
may have to use tactics to overcome resistance to change. Sometimes, this is
because some people are just mired in doing things in a particular way or it may
be because of organizational or interpersonal dynamics that impede the process-
improvement effort. I have seen organizations where process improvement was
at a complete stop because warring parties had political motivations that ad-
versely impacted the organization. In these environments, getting started with
process-improvement can be very difficult or even impossible. The good news is
that this is often when you can make a real difference and demonstrate value.
Remember, failure is just not an option!

10.2 Where Do I Start?

I usually start by looking at the goals and priorities of the organization. It is al-
ways a good idea to take a risk-based approach and tackle process improvement
in the right order. I sometimes find that I have to take a different approach and
work on the items that I can change within a short period of time, just to build
up some momentum. Generally, we call this going for the low-hanging fruit,
which is often the only pragmatic approach to getting started.

10.3 Matching Process to Culture

The most basic reason that teams resist change is that it is packaged in a way
that is just not consistent with their culture and current modes of operating. In
some cases, this might prove to be ultimately fatal for the team because the or-
ganization might have to choose between survival and dealing with the reasons

ptg

Chapter 10 Overcoming Resistance to Change128

that employees are blocking change. I have worked in development teams that
consisted of many highly intelligent and very independent software and technol-
ogy developers. Senior management wanted to improve organizational efficien-
cy and the quality of their products, so they decided to embark on a multiyear
process-improvement effort. The CMMI and SCAMPI (CMMI’s assessment
framework) were picked as the models to be implemented for this effort. Pretty
soon, the organization was deeply focused on establishing process controls and
assessing their own process maturity. Meanwhile, the developers felt discon-
nected by this entire effort and simply chose to not be involved. Many told to me
privately that they had seen these efforts come and go before. To them, this was
just another fad and a waste of time that, if ignored, would simply go away. The
fact is, they were right. As soon as the senior manager who had sponsored this
effort went on to another opportunity, the entire process-improvement project
faded away and things got back to “normal.” I personally recall a number of
New York City fi rms that attempted CMMI-based process improvement efforts
that did not survive the tenure of their management sponsor.

Why Did So Many Groups Fail with the CMMI?

It would be valid to then ask why it is that so many CMMI-based process-
improvement efforts failed. The truth is that CMMI efforts were not the
only process-related projects that failed. But, the CMMI also had a well-
deserved reputation for providing very little guidance on how to actually
start up and implement the functions that were advocated. As such, the
CMMI was more useful for assessment than for establishing the process-
es in the fi rst place. Much has been written about using IEEE standards
for the guidance to establish a process and then use the CMMI (or other
frameworks) to assess existing process and identify areas for future im-
provement. In my opinion, the original CMM from the Software Engineer-
ing Institute at Carnegie Mellon is an excellent framework for process-
improvement, followed by the even more formidable Capability Maturity
Model Integrated (CMMI). SEI’s models have always has been, and with
the evolution of its diverse constellations (to provide different functional
views) will continue to be many of the best process-improvement mod-
els for many years to come. However, there were obviously many areas
where its implementation could be improved. For example, we can cer-
tainly improve our ability to address the people issues that are part of any
large-scale development effort. The SEI People Maturity Model (PMM)
certainly addresses some of these issues, but I also believe that we need to
do a better job of blending psychology and software engineering for the
best results.

ptg

10.5 Process Improvement from Within 129

10.4 Mixing Psychology and Computer Programming

Overcoming resistance to change can prove incredibly difficult to achieve. I have
spent more than 25 years working on creating repeatable processes to address
common technology (and a few nontechnology) problems. In the early years of
my career, I focused on gaining technical skills in both software engineering (we
called it programming back then) and process engineering. This journey took
me deep into the trenches of industrial psychology and quality management. It
was quite lonely at times because I was always the only techie in the psychology
circles, and I was also the only programmer thinking about psychology in my
computer science circles. Back then, I thought that as long as the process was
valid, people would follow. Soon, I learned that there were a number of reasons
why good processes would often never fly and, to my own surprise, some rather
suboptimal approaches would achieve wide acceptance. I also soon realized that
something was missing from my own skill set, and so I went back to school
(again) to study how other disciplines handled process engineering and qual-
ity management. It is worth noting that engineering, medicine, and defense all
have long histories of focusing on process improvement. In some organizations,
these were large-scale process-improvement initiatives, and sometimes they were
more modest efforts started from a particular group that wanted to improve
their own processes. I believe that the best process improvement does indeed
come from within the organization and those who are most affected.

10.5 Process Improvement from Within

I have participated in process-improvement efforts that focused on getting the
members of the organization to identify areas for improvement. That’s not to
say that they ignored existing process-improvement frameworks, but rather that
they began their journey by asking the current employees for their expert advice.
We had many sessions where we brainstormed on identifying existing problems
and opportunities for improvement. Some of the ideas were far-fetched, but
many were also were also right on target. This was no surprise because the
people in the trenches were leading the way to identify valid and useful improve-
ments. It was no surprise that this effort was led by industrial psychologists,
and with their infl uence, that employees felt safe to even make their own jobs
obsolete. The fi rm, a major insurance company, pledged to be a good corporate
citizen by offering good severance packages to those who left and making every
effort to find suitable roles for those who really wanted to stay. Some employees
took (fair and reasonable) buy-out packages, and others transferred to differ-
ent roles. One reason that this worked was that the organization had a strong
culture that valued training and employee development. Most members of the

ptg

Chapter 10 Overcoming Resistance to Change130

organization had a reasonable expectation that they would move into a new and
better position if they helped to improve organizational effectiveness.

My Transition Out of This Organization

I personally had a life change while employed at this insurance company
that required that I move my home to another state. I felt comfortable ex-
plaining my situation to my manager and began helping to train my own
replacement. My boss began using her contacts, and actually helped me
get an offer with another firm. We worked together in two other compa-
nies after that, and I am in touch with her to this day. This organization
overcame resistance to change by creating an organizational culture where
employees felt that they were treated fairly. They also had a learning or-
ganization where training was an expected part of working there. That’s
not to say that things were perfect there, but many of the lessons that I
learned about effective process improvement came from that fi rst experi-
ence. One of them is to carefully survey the organization and get a good
idea of what process improvement should be implemented to solve prob-
lems and improve our own effectiveness.

Survey the Scene

I have spent many hours volunteering as a civilian in police and emer-
gency medical services. From these experiences, I have learned more than
a few lessons that I employ when implementing process improvement. In
emergency services, we talk about surveying the scene. This means that as
you approach the scene of a car accident, fi re, or other incident, you care-
fully examine the entire scene and evaluate possible risks and dangers. The
scene survey must be done before you start to treat any patient; otherwise,
you might try to address one risk when a greater danger is nearby. Process
improvement people need to learn to conduct their own scene survey. This
means that you evaluate the risks and dangers in the organization. You
should do your best to size up your support team. (In police and emer-
gency medical services, we call this backup.) Similarly, when you size up
the organization where you are trying to work, you need to know whom
you can count on for support. The scene survey may uncover that you have
little or no support, and that impacts what you can really accomplish and
how you should approach process improvement

ptg

10.7 Fostering Teamwork 131

10.6 Picking Your Battles

I lived in Brooklyn, New York, for 18 years. During that time, I worked with
many different cultural communities to develop civilian patrols and auxiliary
police. Crime went down signifi cantly during this time, which was a very excit-
ing outcome to be part of. I recall working with one group that operated in the
worst neighborhood imaginable (with rampant crime and drug dealing). The
head of the civilian patrol there used to approach some of the tough guys in
the neighborhood and talk with them about leaving the older people and the
children out of the fi ght. At fi rst I was shocked, but then soon realized that my
buddy was picking his battles wisely. I could work in other neighborhoods and
stop people from stealing cars (using a trained German shepherd as my own
backup). My colleague had to work within the neighborhood where he lived and
with the environment that existed. Obviously, I had great admiration for this
friend whom I always call “brother.” I hope your situation is not that drastic,
but picking your battles can make the difference between success and failure.

10.7 Fostering Teamwork

I have worked in organizations that were very challenged in terms of getting the
teams to work cooperatively together. It often seemed people were willing to
sacrifi ce the needs of the organization for their own agenda. Getting everyone
working toward the same goal can be diffi cult, indeed. There is also no short-
age of confl ict within the police and emergency medical services. I have had
times when I found myself at odds with my colleagues in the emergency medical
services environment, especially other volunteers. Fortunately, we never allowed
this to impact our ability to help others. In one such instance, I recall working
with a medic whom I found particularly difficult to get along with. His attitude
and personality and mine were just not meant to be in the same room. Yet
when we were on the emergency scene together, our cooperation, communica-
tion, and teamwork were impeccable. No one could have possibly guessed that
we crossed swords when chatting at the local coffee spot that was our nightly
“base” between ambulance calls. I have seen excellent teamwork result in sav-
ing people’s lives and poor teamwork result in mistakes that had disastrous
consequences. Teamwork on a software development project might not be as
dramatic as defibrillating a person who has no pulse, but nonetheless, teamwork
is essential if the organization is to survive and thrive. Cooperation is important,
but sometimes there are good and valid reasons for the team to push back on
process improvement.

ptg

Chapter 10 Overcoming Resistance to Change132

10.8 Why Good Developers Oppose Process Improvement

Many developers oppose process improvement because they genuinely believe
that these efforts are unlikely to succeed and that they also interfere with them
getting the real work accomplished. They may also believe that the organization
lacks credibility (perhaps because they have seen efforts fail before). Even worse,
the process-improvement effort might have technically succeeded but resulted in
making their job more diffi cult. Good developers oppose process improvement
for good reasons, and it is important to solicit input from key stakeholders who
can help steer you safely away from the big rocks in the river that may adversely
impact your efforts.

10.9 Procedural Justice

Tom R. Tyler and Steven L. Blader’s work on cooperation in groups discusses
the role of procedural justice and its impact on cooperative behavior. Simply
put, when employees feel that the organization is behaving in a way that is
fair and reasonable, they may be more likely to cooperate. I usually apply this
conceptually to the environments where I work by looking at how employees
may react when they do not think that their employer is being fair. For example,
when employees think that their employer is not behaving fairly, employees may
get very creative in undermining their management. This obviously translates
into employees cooperating with process improvement efforts when they think
those efforts are fair and reasonable. I suggest that the opposite is also true: that
people feel justifi ed in not cooperating when they think the organization is be-
ing unfair and unreasonable. Procedural justice is an important consideration in
managing organizational behavior, especially when trying to implement process
improvement. An important consideration is whether the organization is includ-
ing input from all stakeholders.

10.10 Input from Everyone

Some organizations do well by focusing on eliciting and receiving input from
all stakeholders. In this approach, we elicit input from everyone who will be
impacted by the project. This can sometimes be a problem because of the diver-
sity of views and agendas. More important, it can be logistically impossible to
include input from everyone. One good approach is to get input from a repre-
sentative sample from each group the change may affect. I have seen this type
of effort get badly bogged down in trying to get input from everyone. Senior
management needs to show leadership, in that everyone should have a voice,

ptg

10.12 Process Improvement People May Be the Problem 133

but there is also someone or a specific group that has to make the fi nal deci-
sion. Many frameworks use an approach known as RACI (pronounced “racy”),
which is an acronym that stands for responsible, accountable, consulted, and in-
formed. In the RACI matrix, you specify the person or people responsible for the
effort involved. Accountable refers to the specific person who is accountable for
a particular task, consulted refers to the resources who are asked for input and
informed refers to the person or people who should be kept informed. Although
there can be many approaches to organizing and getting input from everyone,
there still needs to be leadership and accountability.

10.11 Showing Leadership

I have seen many process-improvement efforts fail because of a lack of effec-
tive leadership. Getting input from everyone is great, but there also needs to be
someone steering the ship. Being inclusive should not be a license to derail the
process-improvement effort. However, that is precisely what happens in many
organizations. Successfully overcoming resistance to change also requires good
leadership. This usually comes in the form of a specific change agent who is em-
powered to establish the processes that will be used to help change the way that
people work on a daily basis. Senior management needs to show support for this
effort and help drive the effort forward.

10.12 Process Improvement People May Be the Problem

Many process-improvement professionals do an excellent job and really help to
improve organizational effectiveness in terms of both productivity and quality.
Unfortunately, a lot of other process-improvement folks are really trapped in
their ivory towers and do not have a clue about how to actually do the work
that their processes will impact on a daily basis. I know that I may ruffl e a
few feathers with this statement, but I really believe that process improvement
is much more valid when it is designed and implemented by people who are
hands-on and actually know how to do the work. That means that close col-
laboration needs to occur between process engineering experts and the technol-
ogy professionals impacted by the change. I have seen process-improvement ef-
forts become a complete waste of time when the processes that were established
were completely impractical. In these situations, the process “improvement”
just resulted in extra work for everyone involved while failing to address the real
requirement. In this regard, the process-improvement “experts” may really be
the problem rather than the solution. The best approach is to have technology

ptg

Chapter 10 Overcoming Resistance to Change134

professionals who have both the process engineering and the hands-on technol-
ogy expertise.

10.13 Combining Process and Technology Training

I believe that it is important for the technology industry to develop more profes-
sionals who are strong in both process engineering and hands-on technology. This
can obviously come from two directions. Process engineers can be trained to have
more hands-on technology skills, and technology professionals can learn more
about the value of process engineering. You certainly see Agile doing this today,
with many SCRUM masters being hands-on technology professionals. This might
be less common among folks who are expert in the CMMI framework. At least
it’s been my own experience that CMMI experts are less likely to have hands-on
expertise and experience. That’s bad, and I have personally worked with CMMI
experts who had no clue how to actually conduct a configuration audit or even
promote a release of code into production. They knew the concepts on paper,
but had no idea of how to actually do the job in the real world. To say the least,
their process-improvement recommendations lacked credibility and were often
less than helpful. We need a new generation of process-improvement experts who
have both the hands-on skills and knowledge of process-improvement best prac-
tices. I have personally put this view into practice for more than 25 years.

Tales from the Trenches

Many times, I have gone into a group that was making mistakes (often,
they were creating code releases that did not work as expected). Overcom-
ing resistance to change, in this context, meant that we had to implement
processes to help the team stop making bad mistakes. Usually, the team
believed that bad releases were just a way of life when the technology was
complicated. I would come in as a member of the team and take on the
role of assessing the current release management process and looking for
ways to improve and bulletproof the process. This is a good example of
where ivory tower approaches would not have been successful. Instead, I
became a part of the team and examined the steps necessary to package
and promote the release. In most cases, I was able to create a process that
had just enough controls to prevent mistakes. In almost all cases, I was
able to signifi cantly speed up the release management process into what
I always call the “one-hour” build and deploy. Overcoming resistance to
change, in this case, was a matter of gaining the credibility that I could
actually do the work and that I would use the same processes that I was

ptg

10.14 Listening to the Rhythm 135

10.14 Listening to the Rhythm

Getting a feel for the organization is essential if you are to bring about lasting
change. I have often found that I had to listen to the rhythm of the organization to
really understand what was going on. A good part of this is recognizing the qual-
ity of the communication and interactions, including both verbal exchanges and
nonverbal exchanges. Part of my own training in industrial psychology is to listen
to my inner voice and get in contact with how I personally feel in any organization
(often a good indication of how others feel as well). Every group has a particular
way that members interact. Sometimes, these interactions can be subtle and hard
to pinpoint. In one organization, there seemed to be constant pressure from senior
management that caused many employees to feel stressed. It was no surprise that
they had high turnover and lots of mistakes being made on a regular basis. One
day, I walked into my boss’s office to see him looking pained and stressed. I felt
courageous and genuinely liked this leader a great deal. So, I asked him whether
everything was okay and whether I could do anything to help. His responded by
telling me that he was having one of the worst days that he had in a long time.
Not long after that, he announced that he was leaving the company for another
firm. After he had gone, I continued to feel the same pressure there, and it was
not long before I left the organization, too. What was interesting was that another
colleague of mine had reason to visit the same office. This person was also trained
in psychology and asked me pointedly about the culture of the organization. With
only a short time in that office, this colleague had picked up on the hostile work
environment that existed in this organization.

Listening to the rhythm can be difficult when you are in the organization.
There are always factors that could be coloring your own perception. But my
message in this section is that you really need to listen to your own inner voice

advocating. Obviously, I had to try to quickly get up-to-speed in technolo-
gies ranging from C#/.NET to Java SOA. I can’t say that I have always
succeeded, though; sometimes, the technology just had too many moving
parts for me to manage learning the release management process while si-
multaneously writing the release management automation myself. In those
cases, I needed to take a step back and let the developers do the hands-on
work. But, the more hands-on work that I could do, the better and more
valid my processes would be. Even if I could not successfully pull off being
a code-monkey, I certainly gained the deep trench-level knowledge that I
needed to understand and create valid processes that were the right size
to accomplish the goals of the team. I have also learned to listen to the
rhythm in the trenches.

ptg

Chapter 10 Overcoming Resistance to Change136

and use that information in deciding how to approach the organization and, in
particular, how to implement process improvement. Obviously, you also need
to be a good scientist and test your own hypothesis and the processes that you
implement.

10.15 Processes Need to Be Tested

So, after you have overcome resistance to change and implemented processes,
you also need to test to confi rm that your processes actually meet the goals of
the organization. In this sense, I always try to do test-driven process improve-
ment (TDPI). In TDPI, you design your test cases up front before you implement
your process changes. For example, I tell people up front what a good release
management process will look like. This is important because it’s easy to solve
the wrong problem (and thus fail to achieve your goals). Just as test-driven de-
velopment advocates put the testing process up front (even before you have writ-
ten a line of code), you should also objectively test your own processes. There
are two parts of any test. The fi rst is that your processes will consistently result
in the same results. The second is that you achieve the correct results. In testing
terminology, this is called verifi cation and validation. Verifi cation means that
your processes have the intended results. Validation means that your processes
have the right results!

10.16 Baby Steps and Process Improvement

You will have to decide whether your changes should be implemented in a big
bang approach or in small steps. Generally, I have found baby steps to be much
easier to implement, as long as you give some indication of what the end game
really looks like. I have found it much easier to overcome resistance to change by
compromising and winning small changes than to try to make the teams change
the way that they are working in a manner that could really impact their short-
term deliverables. For example, helping a team use their existing SCM tool a lit-
tle better is generally much easier to achieve than to try to implement a new tool
altogether. If you attempt a more aggressive approach, it will be much harder to
gain support and approval for your intended change. Obviously, sometimes you
really need the big bang approach, but more often than not, small and incremen-
tal changes make for better overall results.

ptg

10.19 Process Improvement as a Service 137

10.17 Selling Process Improvement

The most important factor in overcoming resistance to change is to learn to
market and promote your process improvements in an organized and effective
way. I usually focus on marketing my services to the development team (and
my senior management sponsors). This is an important distinction, and many
technology professionals miss this point entirely. Selling process improvement
should be proactively marketed. This is also true for implementing new tools.
I have implemented many source code management systems and often found
that the team was torn between one approach and another. Marketing process
improvement means that you package the process interventions in the best way
possible and consider that your team may decide to reject the process and go
with a different approach. This means that you need to demonstrate why your
approach is better and should be the one adopted. Just like any sales effort, you
need to demonstrate exactly how a proposed process can add value to each of
the stakeholders involved.

10.18 What’s in It for Me?

It might sound simplistic, but most technology professionals want to know how
a particular process improvement approach will impact them personally. Will
the new process help them do their work better or just add hours of meaning-
less work onto an already impossible schedule? When I am working with a
particular team, I always try to understand their requirements and priorities.
In this respect, I am really acting as a salesman, and I try to understand exactly
how my processes will impact each team. Generally, I hope that each team will
view process-improvement as helping them individually and come to think of
process-improvement as a valued service.

10.19 Process Improvement as a Service

The process-improvement team is most appropriately viewed as a shared serv-
ice. Well-defined processes can impact many groups. I try to promote the serv-
ices of my team as a shared service. That means providing your colleagues with
customer service that is efficient and meets their needs. It also means that I need
to be conscious of improving my own processes on an ongoing basis. Taking
this approach helps to overcome resistance to change by building credibility
with your colleagues. For example, setting a reasonable expectation for pro-
viding support is essential. Many companies talk about creating a service level

ptg

Chapter 10 Overcoming Resistance to Change138

agreement (SLA), which defi nes and sets expectations for how quickly your col-
leagues can expect assistance and support.

10.20 Guerrilla Tactics for Process Improvement

I have certainly spent a fair amount of time discussing cooperative and soft skills
for overcoming resistance to change, which are my preferred means of operat-
ing. But there is another side of this approach that needs to be discussed, too.
Sometimes, you just need to take the gloves off and push change through at all
costs. In one such instance, the organization that I was part of was simply going
to cease to exist if they did not fi x their error-prone processes. They were way
past the point that we could use “soft” tactics (such as consensus building), and
the resistance was high. In this case, I had to put on my “bull in a china shop”
act and come in and dictate changes. In this case, there just wasn’t going to be
a “tomorrow” if I failed. Obviously, this is risky, and you need to try to gain
some positional power before trying to do this on your own. Guerrilla tactics,
include involving senior management and possibly working to get some mem-
bers of the team removed or reassigned. When this is necessary, I focus on the
goals and communicate as clearly and openly as possible. I also usually point to
other organizations and argue that there is no logical reason for us to be differ-
ent from other organizations. This is not a good place to be and often results in
failure, yet sometimes you have no choice and need to resort to guerrilla tactics.
In Chapter 14, “Industry Standards and Frameworks,” we examine standards
and frameworks that you can use to push for change in these situations.

Failure Is Just Not an Option

As I mentioned earlier in this book, I was blind as a child. People with
severe handicaps survive by developing a fierce sense that failure is just not
an option. I cherish that spirit, and will always identify with the disabled
because of that trait. When I was a child, my mother used to take me to
meet people with signifi cant challenges to show me that many disabled
people were indeed very accomplished. In one such instance, when I was
12 years old, I met and spoke with an activist named Harold Rosenthal,
a quadriplegic who suffered from multiple sclerosis. I listened attentively
as he discussed his frustration with trying to get elected offi cials in Nas-
sau County, New York to pass a new law enabling qualified handicapped
people to have special parking permits. Back then, many people did not
believe that the blind and disabled could live independent lives. Many peo-
ple did not even believe that the disabled had a right to independence

ptg

139Conclusion

Conclusion

 Overcoming resistance to change is difficult to achieve, and technology pro-
fessionals are often unprepared to address the challenges involved. Successful
process improvement involves considering the culture of the organization and

1 It is worth noting that the original petitions specifi cally said that they would never be
used to block fi re hydrants, bus stops, or crosswalks.

and reasonable accommodation. The parking permits were needed to help
many disabled people be able to travel and take care of their day-to-day
needs. This was an extreme example of resistance to change.

One evening, I innocently asked Mr. Rosenthal whether getting peti-
tions might help sway the elected officials who seemed to be dragging their
heels on what seemed like a simple request. In those days, these special
parking permits existed only in California, but this was the fi rst time that
a group had petitioned for them anywhere in New York. At the time, Mr.
Rosenthal said, “Sure, that would be helpful.” I knew, at the time, that he
did not believe that I would be able to do anything to help with this ef-
fort. Of course, being a little blind kid, I was much more determined than
anyone could imagine, and I organized ten of my friends, all under the age
of 13, and we stood on street corners getting people to sign our rag-tag
handwritten petitions. 1

Pretty soon, I had a hundred signatures (with local newspapers starting
to take notice), and the next thing that I knew we had a court date to peti-
tion the Nassau County legislature for the handicapped parking permits.
What was personally exciting for me is that I was going to be allowed to
hand my petitions to the county executive directly (which was incredibly
exciting for a 13 year-old blind kid). Sadly, my mentor passed away a
few nights before we were to be allowed to speak in court. Then, I heard
that I would be allowed to speak in his place and, at the age of (then)13,
I learned firsthand that mountains can be moved with the right amount of
effort. Today, we see cars with handicapped parking permits all over, and
most people have no idea how the handicapped parking permits were first
approved and implemented.

If overcoming resistance to change matters to your organization, you
need to adopt the view that failure is just not an option. I can tell you from
my own experience that mountains can be moved and miracles can happen
through lots of hard work and determination.

ptg

Chapter 10 Overcoming Resistance to Change140

a clear evaluation of the root causes prompting the need for change. In some
cases, you need to understand why the group is currently failing in their efforts.
We all need to focus on improving our soft skills to complement our technical
skills. Approaching this effort involves looking at the entire situation in what I
have described as a scene survey. Process improvement should start from within
the group and involves carefully picking the right battles, goals, and priorities.
Addressing challenges related to poor teamwork, being inclusive, and taking an
honest and open look at why you are meeting resistance to change are essential.
It is also important to test and verify that the proposed changes are valid and
consider whether baby steps are the best strategy or whether extreme measures
are necessary. Rightsizing your approach to overcoming resistance to change
also means that you need to consider each of these issues as appropriate. Some-
times, you will need to employ guerilla tactics and that may touch your inner
“bull in a china shop.” (Careful, don’t break those nice crystal wine glasses!)

While you are at it, don’t underestimate the abilities or especially the deter-
mination of the blind and disabled. In fact, take a lesson from this “blink” and
start moving some mountains around!

ptg

Chapter 11

Personality and CM: A
Psychologist Looks at the
Workplace

By Leslie A. Sachs

Chapter Overview

11.1 Personality Primer for CM Professionals 144

11.2 What Do CM Experts Need to Consider in Terms of
Personality? 146

11.3 Applying Psychology to the Workplace 152

11.4 Family Dynamics! 155

11.5 Workplace Culture and Personality 156

Why does personality matter to a CM guru? Implementing CM best practices
impacts each member of the team in a number of important ways. Understand-
ing the personalities of other members of your team, and how others experi-
ence you, will significantly enhance your ability to succeed in any position that
involves cooperation and integration among individuals and groups. Given the
reality that the IT profession is becoming a globally interdependent industry
at what feels like “warp speed,” CM practitioners, in particular, must possess
fi nely honed “people skills” for their complex collaborations to succeed.

This chapter provides you with insights into “what makes people tick” and
specifi c strategies that will enable you to work more effectively with even the
most challenging personalities you may encounter. We have already discussed

141

ptg

111444222

overcoming resistance to change, but there is a lot more to the people side of
CM best practices, and this chapter will help you communicate more effectively
as it highlights some of the factors that may affect your efforts to implement
CM. I suggest that you read this chapter with a view toward increasing your
awareness of how these personality issues relate to you personally and toward
improving your insight into how others may perceive you. Many of the dynam-
ics presented are common in most organizational environments, and you will
probably find that they sound familiar. If you are aware of them and can adjust
accordingly, you will be more effective in any environment.

In this chapter, you will fi nd just enough information on personality to help
you to more effectively implement CM best practices. You can find more theo-
retical background material on the website for this book (http://cmbestpractices.
com/personality). We start with a helpful personality primer for technology pro-
fessionals and then discuss what you need to consider in terms of personality.
For example, we look at communication styles (including differences in inter-
preting language) and how to provide effective consultation (especially verifying
that your message has been received). We consider the variability in how people
process information and discuss how you may experience the effects of birth or-
der at the office (e.g., fi rstborns). And most importantly, we cover how to apply
psychology to the IT workplace, with particular focus on principles of effective
teamwork and the group dynamics unique to CM. We also consider the inter-
personal dynamics where CM impacts QA and how to tackle indecisiveness.
In addition, we examine workplace culture and personality, along with how
personalities handle structure and how to deal with those who believe that they
have already invented all the good ideas. We close the chapter by considering
the loose cannons who just don’t want to comply, enforcing process, and some
formulas for success. In a nutshell, this chapter focuses on applying psychologi-
cal insights to more successfully implement CM best practices.

Goals of Understanding Personality: What’s in It for
Me?

One primary motivator driving most people to learn is the realization that
knowledge is power. Increasing your understanding of personality enables you
to be a much more effective communicator, which usually translates into both
improved workplace performance and satisfaction. Individuals who not only
understand the various personality types but also know how to work harmoni-
ously with most of them are generally very well regarded by their peers, and
their superiors certainly appreciate this hard-to-find sensitivity. Most MBA pro-
fessors would probably identify this attribute as one of the five most important
factors found among successful managers. In the IT workplace, which today

Chapter 11 Personality and CM

http://cmbestpractices.com/personality
http://cmbestpractices.com/personality

ptg

Goals of Understanding Personality: What’s in It for Me? 143

requires collaboration of a breadth and depth unimaginable just a generation
ago, the ability to identify a colleague’s personality style and recognize the most
effi cient way to work together is crucial to the success of even small projects,
which may still involve multiple teams distributed among several physical sites.
When a particular team or project includes multiple strong personalities, the
resulting dynamics will certainly impact progress. The plethora of managerial
support consultancies attests to the need for objective feedback to avoid the
common pitfalls that frequently arise when these personality factors are not
considered and addressed in a supportive and productive manner.

1 Those tendencies include traits, dispositions, unconscious dynamics, learned coping
strategies, habitual and spontaneous affective responses, goal-directedness, information-
processing style, and genetic and biological factors.

What Exactly Is Personality, Anyway?

Unfortunately, despite all the hours of scholarly research and the thou-
sands of volumes written, there is still no neat and concise definition for
personality. The origin of the term comes from the Latin word, persona,
which is commonly understood to refer to the “mask” that people often
present to others as they fulfi ll the various roles in their life. Yet, despite
the fl exibility that most humans demonstrate to alter behavior somewhat
to meet varying demands, we seem to possess an underlying “core” from
which this modifi ability flows. Throughout the years, both social and clini-
cal psychologists have focused on specific aspects of this core identity in
their studies of human personality. Many questions regarding the origins
and permanence of observed personality trends remain the subject of vigor-
ous debate. However, despite the complexity of the human psyche, enough
data exists to formulate a consensus definition based on the recognition
that personality is determined by studying a broad pattern of a number
of human tendencies 1 that give some degree of consistency to human be-
havior. In a nutshell, however, the key factor that makes understanding
personality so crucial to so many situations is that we are usually not so
concerned with a unique occurrence of a particular behavior, but rather
we try to focus on an individual’s consistent pattern of behaviors, cogni-
tions, and emotions. The notion that one’s personality is reasonably stable
and consistent makes the lure of both analysis and prediction somewhat
inevitable. The many systems that have been created to observe, measure,
and categorize personality types, several of which are discussed in greater
detail later in this chapter, rely on the fact of this relative stability across
time and place.

ptg

144

11.1 Personality Primer for CM Professionals

Two main personality-related interactions affect the workplace. The first dy-
namic, which is usually what comes to mind when people think of this topic,
involves the myriad possibilities that occur when various personality types must
interact. The second, which is addressed later, concerns the fi t between an or-
ganization’s “culture” and a specific individual’s unique personality. There are
numerous systems for organizing personality types into subsets of major catego-
ries, some more respected/utilized than others, but one essential feature defi nes
all the systems that have withstood the test of time; they enable us to reliably
sort others into groups according to observable behaviors so that we may some-
how benefi t from specifying these criteria. It really doesn’t matter whether a
personality system names its categories Artists, Judges, and Yodas, or A’s, B’s,
and C’s, as long as the terms are delineated clearly enough that different people
can consistently agree on who falls within each category (This prior statement
presumes, of course, that all the types are given a title that is considered neutral
and none carries a negative association.) You can learn more about the theory of
personality by visiting this book’s website (http://cmbestpractices.com/personal-
ity), but in this chapter, we discuss the basics and how you can apply them to sit-
uations that may impact you and your efforts to implement CM best practices.

Myers-Briggs

The most widely recognized personality assessment geared to the work
environment is the Myers-Briggs Inventory (MBI), which focuses on four
distinct functions: social comfort zone, receiving of information, decision-
making style, and organizing style. Each of these dimensions is measured
in terms of selecting on which end of a continuum an individual falls. By
combining each of these four factors, the inventory specifi es 16 distinct
types. Odds are that most of you have completed an MBI at some point in
your professional career and have a fairly accurate idea of how you func-
tion in the work setting with regard to these personality traits. But, how
well can you assess your colleagues’ personalities in a meaningful way?
Please come to this book’s website if you’d like to brush up on your ability
to recognize someone’s preferred style in each of the four main dimensions
of the Myers-Briggs.

Chapter 11 Personality and CM

http://cmbestpractices.com/personality
http://cmbestpractices.com/personality

ptg

11.1 Personality Primer for CM Professionals 145

The Big Five

After decades of research into personality factors, many prominent psy-
chologists have developed a view of personality that focuses on five broad
personality traits:

1. Openness to experience (culture)

2. Conscientiousness

3. Extroversion

4. Agreeableness

5. Neuroticism

These are commonly referred to by the acronym OCEAN. I will re-
sist the urge to go into the details of the research method (meta-analysis)
involved and instead explain that these fi ve personality traits have been
studied as predictors for success (or failure) in many different professions.
I suggest that of all of these traits, conscientiousness, which has been found
in many studies to be helpful in predicting the success of people in certain
occupations (e.g., police offi cer), is the factor most relevant to CM. It is
understandable that configuration management professionals often have
to perform a type of enforcement, especially in organizations that have
compliance requirements, to ensure that everyone follows organizational
processes, including safeguarding the assets of the fi rm (e.g., production
releases). Therefore, it should not surprise readers to learn that Bob has
been a member of the auxiliary police for more than 15 years. Confi gura-
tion management experts also need to have a measure of agreeableness
and extroversion to work successfully with all members of the team, but
their primary goal is to make sure that the code is always built following
all corporate standards.

DSM-IV R

Another paradigm for understanding personality comes from the medi-
cal establishment and their psychiatric diagnostic manual, known as the
DSM-IV R. This standard reference provides clinicians with an objective
framework for evaluating their clients. Although this volume is used pri-
marily to diagnose major psychiatric disorders, there are also lists of symp-
tom clusters that can be indicative of milder, yet specific defi ned personal-
ity types. These less-severe types are categorized based on the predominant

ptg

146

11.2 What Do CM Experts Need to Consider in Terms
of Personality?

Experts in the field of human resources frequently rely on one of the major
personality categorization hierarchies to understand and enhance workplace
dynamics. Several researchers have authored their own to more accurately de-
scribe the people they encounter in their daily lives. Although familiarity with
the afore-mentioned and other personality systems is certainly an asset, you
need not be thoroughly versed in specifi cs to benefit from the insights such in-
formation can offer. A pragmatist by nature, I am a rather eclectic practitioner
and usually combine therapy modalities to achieve behavior change more suc-
cessfully than would be possible with any single methodology. So, too, I take a

pattern of maladaptive behaviors a sufferer tends to exhibit when stressed.
In fact, awareness of mental health issues has increased so much in the
past few decades that most people are now somewhat familiar with the
characteristics frequently associated with many of the major types and
can recognize exaggerated tendencies in their colleagues. The savvy profes-
sional can use an informed understanding of personality style according to
these labels to swiftly observe when specifi c personality defi ciencies might
impair productivity and suggest how the situation might best be addressed.

Erik Erikson

The work of developmental psychologist Erik Erikson provides another
popular framework for understanding personality development. He theo-
rized that all people must navigate through a series of eight specifi c chal-
lenges as they mature. During each of these phases, they struggle to find
some balance between opposing urges and one’s resolution of each stage
helps to defi ne their personality with regard to that dimension. For exam-
ple, Erikson suggested that between the ages of 1 ½ to 3, as children learn
to manipulate objects, walk, and control their bodily functions, they are
particularly prone to feelings along a continuum from autonomy to shame
and doubt. How successful children and adults are at learning to handle
these key confl icts will continue to affect their functioning long after they
have progressed to the next phase. Insuffi cient mastery of many of these
levels will often result in personality issues (such as lack of initiative, poor
self-image, and so forth), which will probably interfere with work per-
formance.

Chapter 11 Personality and CM

ptg

11.2 What Do CM Experts Need to Consider in Terms of Personality? 147

broad approach when it comes to sharing critical information gleaned from the
professional literature. Rather than an in-depth analysis of any particular sys-
tem, the balance of this chapter is devoted to discussions of the key personality
variables likely to affect your daily work experience. For each variable, I also
suggest the approaches best suited for addressing that specific issue.

11.2.1 Communication Styles

Communication is both the “glue” that keeps an organization together and the
“grease” that keeps the gears in motion. Probably no other single personality
factor so directly impacts our ability to function in society, especially on the
job. Very often, when people don’t seem to click, the friction can be traced back
to subtle “misfi res” in the way that they are communicating with one another.
Such misfires may result from differences in age, gender, education, language,
culture, or personality. Language and cultural differences tend to be the easi-
est to spot and correct. However, just as frequently, subtle nuances fly “under
the radar,” and one or both of the individuals involved may have no conscious
awareness, just a vague sense of not being fully understood.

11.2.2 Do Men and Women Use and Interpret Language Differently?

Deborah Tannen discussed intergender relations with her best-selling book, 2

which detailed what she believed to be evidence that men and women interpret
language differently. It seems logical that you could apply her findings to the
workplace, and indeed she subsequently wrote another book 3 exploring the im-
plications of language differences for employee communications and dynamics.
Co-workers can have vastly different communication styles and unintentionally,
yet repeatedly, offend one another by not realizing the negative effects their style
has on the other. Whether you accept all of Tannen’s conclusions regarding the
relationship of gender to communication styles (many of her critics have pointed
out that gender differences in communication are more about what men and
women communicate about than how they use language), her research has impli-
cations for generational and cross-cultural communication differences, too. Open
and frank discussions about this phenomenon simply cannot be avoided if a team
truly values constructive communication. Communication styles cover a wide
spectrum, and each end of the continuum has something to offer. Management

2 Deborah Tannen. You Just Don’t Understand: Women and Men in Conversation. New
York: Morrow, 1990.
3 Deborah Tannen. Talking from 9 to 5: How Women’s and Men’s Conversational Styles
Affect Who Gets Heard, Who Gets Credit, and What Gets Done at Work. New York:
Morrow, 1994.

ptg

148

must establish a work environment that recognizes this reality and that rewards
employees’ efforts to help bridge the inevitable communication gaps for the ben-
efi t of the entire organization. In practical terms, this means that you need to
be aware of whether any gender, age, cultural, or other bias impacts your own
communication style, and if so, what you need to do to communicate effectively
with the other members of your team.

11.2.3 Effective Consultation

In my consultation experiences, Step 1 is to highlight how and why these prob-
lems arise, and Step 2 involves clearly identifying the team’s primary goal as
improving everybody’s lines of communication. After these objectives have been
accomplished, the final step is to outline those practices that will ensure that all
voices are heard and respected. In general, I have found that when no inherent
value is associated with either end of the communication spectrum (so that no
employee need feel one particular style is wrong or bad), individuals are more
likely to make sincere attempts to respect others’ styles and accommodate those
whose preference might differ from their own. The bottom line is that successful
fi rms foster a climate where people try to really “hear” each other and respond
respectfully, even if they have diffi culty with the communicator’s style or they
disagree with the message.

11.2.4 Verifying the Message

“What I hear you saying is ____. Is that correct?” One of the simplest and most
effective strategies for enhancing communication is to encourage employees to
ask for verifi cation from colleagues that the message they heard is the one that
was actually intended. I frequently use a great icebreaker exercise to dramati-
cally illustrate how often people subconsciously ascribe meaning and nuance
that was never intended by the speaker. I ask everyone in the circle to turn to the
person seated to their right and make a neutral comment. (For example, “I no-
tice you’re wearing a blue sweater today.”) Then each group member is asked to
remark on what he or she thought and felt on hearing the comment. The group
is usually amazed to discover that more than 50% of the individuals perceived
the comment directed toward them as distinctly positive or negative, rather than
neutral. So, it is crucial to have all employees develop the habit of “checking in”
with others to minimize the incidence of such inaccurate “reading into” others’
statements. During group meetings, those employees who are the most adept at
this can take turns summarizing the group process so that all are clear on what
is being outlined. An added bonus of this practice, commonly known as active
listening (and highly valued in the therapeutic community), is that it has been
shown to enhance trust and improve both the quality of communication and

Chapter 11 Personality and CM

ptg

11.2 What Do CM Experts Need to Consider in Terms of Personality? 149

satisfaction with interpersonal relationships. Verifying the message will help you
ascertain and implement CM best practices that actually meet the needs of your
team.

11.2.5 Information Processing Preferences

You have probably noticed that everybody has a preferred method for gathering
and organizing information. Sometimes, this preference is linked to a person’s
own communication style, but not necessarily.

11.2.5.1 Sensory Modalities and Sensitivities
Certain individuals learn best from auditory input, others from visual. Some
people learn best with verbal material, whereas others perform better with data
presented as numbers or pictures. Analogously, individuals often strongly prefer
organizing and presenting their results in one format or another. People also
vary considerably in their sensitivity to external sensory stimuli, with some re-
quiring total silence to concentrate, while others actually prefer some mild back-
ground distraction to maintain optimal focus. The most effective team leaders
try to ascertain the personal information processing strengths of each of their
group members and allow them to work in ways that maximize the opportunity
to utilize their preferred processing modality. Good teams usually have a mix-
ture of all types, with some competent “translators” to smooth out the rough
edges and keep the process moving along. Employees are more satisfied and ef-
fi cient when they are operating within their natural “comfort zone.”

11.2.5.2 Processing Style
Processing style is another important factor that impacts both individual and
group functioning. Some individuals work best when data is incorporated one
piece at a time in a serial fashion. Others like to have all the relevant details
presented all at once and organize it simultaneously. Employee A may not be
willing to comment until he has “all the facts,” whereas another team member
might feel more comfortable suggesting options to consider while more data is
being collected. None of these approaches is absolutely right or wrong; each has
its advantages and disadvantages. The key is that the skillful manager recognizes
the various tendencies and takes that information into account both when form-
ing project teams and when evaluating the type of feedback each employee is
tasked with providing.

11.2.5.3 Processing Speed
A related, yet distinct, variable concerns the speed with which individuals proc-
ess new information, integrate that knowledge, and can provide necessary feed-
back to others. Employees who can perform these functions extremely rapidly

ptg

150

may become impatient with colleagues who are not as speedy. Meanwhile, those
workers who take a bit longer than the average may become anxious if others
appear overtly irritated and might feel pressured to respond without suffi cient
understanding/consideration of all the factors. Faced with angry foot-tappers,
some less-confi dent personalities might just shut down and fail to give input,
thereby depriving the organization of potentially useful ideas. It is the manager’s
job to be attuned to each of these information processing issues and help the
team balance their innate preferences for the benefi t of achieving their shared
goals and objectives.

11.2.6 Birth Order at Work

Much has been written about what role, if any, birth order has on personality
development. Most readers are probably familiar with the most common stere-
otypes such as assertive eldest, conciliatory middle, carefree youngest, and self-
absorbed only. Just how accurate are these perceptions? Well, it turns out that
social researchers have determined that there is more than a “grain of truth” to
these labels, although only in the most general terms. The effects of your posi-
tion in the family may indeed infl uence your work style and the way you relate
to others. As you might have guessed, certain atypical circumstances in a given
family may result in individuals who function more like someone with a differ-
ent birth order. For instance, a child born when the older sibling is mostly grown
and fairly independent will frequently act more like an oldest or only. Always
bear in mind that social science observations about correlations and data trends
should never be confused with inferences of causation. That said, both popu-
lar and professional research literature abounds with well-documented reports
that outline the characteristics most commonly associated with each birth-order
position. However, it is important to remember that insights regarding birth
order should be used only for their capability to illuminate employees’ potential
dynamics rather than to predict probable behaviors.

11.2.7 Firstborns as Leaders

Disproportionately represented among the world’s CEOs, firstborns are de-
scribed as leaders, managers, and organizers par excellence. They like to feel in
control and may become quite unsettled if unexpected events transpire or they
suddenly feel they are “in over their head.” However, their laser-like focus on a
goal coupled with their talent for organizing others means fi rstborns can often
achieve what they desire, whereas less-driven personalities might not succeed.
What typical firstborns lack in risk taking is positively balanced by the stability
they offer as they spur others on to strive for excellence in both quality and pro-
ductivity. Placing considerable value on the approval of authority fi gures, they

Chapter 11 Personality and CM

ptg

11.2 What Do CM Experts Need to Consider in Terms of Personality? 151

can be usually be relied on to not “shake things up” too dramatically In their
zeal to forge full steam ahead, however, these enthusiastic (and frequently per-
fectionist) employees might sometimes need brakes to avoid steamrolling over
others.

11.2.8 The Middle-Born Compromiser

Often described as “people” people, second and middle-borns are usually the
most fl exible and are regarded as consummate compromisers. Having had to
deal with a sibling from day one, this personality is frequently the best at ne-
gotiating and balancing competing social needs. They usually enjoy working
alongside others and are likely to be motivated by the idea of a team goal. Mid-
dle-borns value friendships and a feeling of belonging, so they naturally try to
get along, also encouraging harmony among others and helping the team stick
together. Relationships are clearly a priority for this personality, and the savvy
manager will make certain that the middles in their midst aren’t unintentionally
offended by being excluded from any major activities. A strong desire to put
people fi rst and the ability to work well with many different types makes many
middle children the lubricant that keeps a team’s gears running when a process
is in danger of becoming derailed due to personality conflicts.

11.2.9 The Youngest as Initiator

Not surprisingly, youngests display yet another distinct cluster of characteris-
tics: They tend to be the initiators, idea people, and the challengers of the world.
They represent a high preponderance of the creative, spontaneous free spirits
who are known for injecting fun into whatever they do. Loose and lighthearted
when compared to their more responsible older siblings, later-borns are often re-
quested to “grow up” already and get serious. These inventive types may perse-
vere enough to see their intriguing plans begun, but despite their impatience and
initiative, they are not noted for following through until completion and may
benefi t from clear guidelines or need some gentle prodding to fi nish assigned
tasks. Very proud of their originality, members of this lively group usually like
to be noticed, so sharp managers are encouraged to acknowledge the efforts of
their youngest-born employees (not a particularly difficult challenge given the
noteworthy contributions youngest employees frequently make).

11.2.10 The Only Child

The only child tends to be a unique blend that combines aspects of each of the
other three types: They tend to be quiet achievers who reliably finish what they
begin while striving to reach the highest level possible. Because they will settle

ptg

152

for nothing less than superior results, these individuals also frequently improve
the performance of the group as a whole. Having been left to their own devices
much more often than others due to their family circumstance, onlys frequently
demonstrate a remarkable ability to work for long periods of time in solitude.
However, their comfort with solitary endeavors can make them appear secretive
to others, and they often don’t deal well with interpersonal confl ict. Yet, their
aptitude for strategic thinking will be appreciated by managers who know how
to harness the unique talents of those in his department. Frequently raised as
the sole focus of adult attention, onlys expect to be recognized, but this desire is
usually tempered by a strong aim to please, too.

11.2.11 Being Yourself

Sometimes, because of specifi c circumstances (such as parental absence or a
large gap between siblings, for example), a person will function according to
a type not necessarily associated with their actual position in their family of
origin. Although many individuals may recognize isolated traits from each type,
your dominant birth order personality can be determined by seeing which over-
all description best matches your basic daily style. Know yourself, and be aware
of your work situation, because sometimes your birth order personality should
take over, but in other situations, peak performance may dictate that you try to
work more like someone in another position. This might make you feel uncom-
fortable at fi rst, but if you can do it, you are way ahead of the pack!

11.3 Applying Psychology to the Workplace

Many professionals in the behavioral sciences (e.g., industrial/organizational
or school psychology) apply their understanding of learning and motivation to
work environments to maximize productivity. These practitioners are frequently
called on to help solve behavioral problems to optimize the performance of both
individuals and teams. Although Deming, the father of quality management, in-
sisted that rallying individual employees with esteem-enhancing slogans is coun-
terproductive (and arouses frustration and resentment in some), other behavior
scientists have actually found that combining positive statements with tangible
rewards does lead to improved performance. The real fun begins when one has
to inspire colleagues to “play nicely” together in situations when the interests
and objectives of one person may, at times, conflict with another member of that
group or a different group with which they interface regularly. Such scenarios
are common in the world of CM as the various development and testing teams
continuously interact throughout the software development process.

Chapter 11 Personality and CM

ptg

11.3 Applying Psychology to the Workplace 153

11.3.1 Effective Teamwork Begins at Home

This dynamic is also common to the one social grouping to which everyone be-
longs: the family. Every person has had fi rsthand experience living with others
who have very different personalities, tastes, and so on. Many times, the indi-
vidual group members (especially siblings) may have had conflicting interests/
goals regarding resource allocation or other issues. Yet, the managers (a.k.a. the
parents) repeat the mantra that “we are a family” to emphasize that the whole
is greater than the sum of the parts. In families that function well, every child
is recognized first for their uniqueness and inherent worth but also for how
they utilize their gifts to enhance the family as a distinct entity. By repeatedly
reinforcing the message that individual success depends on group synergy and
mutual support, parents provide the fi rst example of effective teamwork. This
core understanding of the benefi ts of positive interdependence is a latent, yet
very valuable, social skill readily available just beneath the surface for successful
managers to promote in their employees, too.

11.3.2 Volleyball or Effective Collaboration

Imagine the two previously mentioned groups as opposing teams playing a game
of volleyball. Developers hit the release over the net to QA. Then QA finds bugs
and hits it back to the testers. If the product gets past QA and afterward bugs are
found, QA is blamed for not finding the bug. So, the developers are subtly moti-
vated to have QA “accidentally” miss some problems until after release, so that
they can claim to have done their “piece” of the project on time. (In fact, many
discussions usually occur regarding whether a given bug that has been found is
serious enough to hold up the release.) The only way out of this dilemma is to
consistently and conspicuously reward effective collaboration between the two
groups. Ideally, individuals within both teams should be incented only to create
successful products, not just to have someone else to blame for failures!

11.3.3 Embedding Build Engineers and Testers in the
Development Team

Many Agile practitioners advocate embedding testers directly within the devel-
opment team. However, having the testers in the development team can create
a confl ict of interest for the firm (and might not be in compliance with required
IT controls or meet governance standards). Developers want to meet their dead-
lines (and may have signifi cant fi nancial reasons for wanting to do so). If a bug
is found in production, the fi rm may lose a lot of money. Embedded testers
might feel pressured to let problems “slide by.” If they resist, the developers
may consider the tester to no longer qualify as a supportive (and committed)

ptg

154

member of the team. This can result in less information being given willingly to
the test team, and of course, will result in them being kept in the dark during
subsequent releases. Embedded testers are obviously more effective when they
do know exactly how the application is supposed to function and exactly what
functions have been changed for a particular release. Similarly, embedding build
engineers in the development can help to stay on top of changes in development
requirements that might impact the application build, release, and deployment.
Clearly, open and honest communication is critical for successful Agile and, in
fact, for all teamwork.

11.3.4 Blackbox Versus Whitebox Versus Graybox

Blackbox testing means that the testers have no visibility into what has been
changed. The testers just follow their regular test plans or some just “bang on
the keys” to see what breaks. (Some people actually insist that this is the best
testing methodology). Whitebox testing means that you know what has changed
and can focus testing solely on the changed functionality. This is convenient
when testers are embedded with the developers. Graybox testing is, not surpris-
ingly, an eclectic compromise between the two approaches: The testers still do
some blackbox testing after they use their inside knowledge to specifically test
the known functional changes. Agile also strongly advocates robust unit testing
(such as JUnit) and continuous integration.

11.3.5 Group Dynamics That Can Damage the Organization

With all that in mind, QA still needs to have visibility into what has changed
without having to be pressured into approving a release before it is ready. There
has to be a tolerance for missing deadlines or at least some mechanism for com-
municating the risk of putting a release into production before it has been fully
tested. Without these controls, the group dynamics create an adversarial rela-
tionship that pits the development team against the test team—all to the detri-
ment of the organization.

11.3.6 Where CM and QA Fit In

CM provides the QA team with visibility into what has changed (e.g., change-
sets) so that priorities can be managed more effectively. But, the real priority is
for management to lead the hardworking members of both teams to realize that
each group can truly fulfi ll its function within the organization only by coop-
erating completely with the other. Both development and testing professionals

Chapter 11 Personality and CM

ptg

11.4 Family Dynamics! 155

must be motivated, by management, to consider their job done only when they
have enabled the others to do their best work, too. Technology leadership needs
to recognize that neither team alone can produce a working system, but man-
aged as a cooperating team, their efforts complement one another and produce
results that win.

11.4 Family Dynamics!

In the fields of both school and community psychology, we sometimes see family
dynamics that are also less than desirable. It’s important to note that the most
common characteristic found in most dysfunctional systems are poor commu-
nication systems and lack of respect. Effective interventions are often needed to
help the parents understand their own unique contribution to the family system.
By empowering each parent to recognize his or her special talents and to com-
municate more effectively, the parents become more confident and subsequently
more accepting of the others’ contributions, too. Agile parents, in turn, are more
able to support their children as they learn to resolve conflicts that inevitably
arise. Developing the ability to appreciate interpersonal differences and derive
benefi t from this awareness is a life lesson with numerous applications. Par-
ents who effectively manage the conflicts of sibling rivalry also empower their
children to live happy and productive lives (not unlike the value added when
development and testing enjoy a healthy relationship). When everyone works
together, the results are always superior to whatever the individuals could have
accomplished independently.

11.4.1 Indecisiveness

Much of this chapter has focused on well-defined personality types. But what
of the individual who is not so “visible?” Every organization usually includes
some employees whose most obvious personality characteristic is their desire to
remain in the background. Many times, this tendency relates to issues of poor
self-esteem. The person who is reluctant to “take a strong stand” may lack con-
fi dence. However, this behavior might derive from shame suffered at the hands
of overly demanding or punitive adults in the past and is not at all a refl ection
of their actual competence. Sensitive colleagues will encourage such quiet and
indecisive employees to speak up more and contribute to the team’s planning
and project execution. As their contributions increase, so will their awareness
and appreciation of their significant and productive role, leading to greater self-
confi dence, and thus setting in motion a repeating cycle of calculated risk, posi-
tive reinforcement, and continued professional growth and improvement.

ptg

156

11.5 Workplace Culture and Personality

Personality type affects one’s performance not only in terms of individual pro-
ductivity and relationships with colleagues, but also with regard to the indi-
viduals’s “fit” with the organization’s “culture.” While researching the many
variables that impact employee performance, some industrial psychologists have
focused on the importance of the role that the work environment plays. For
some very autonomous types, a rigid culture might feel stifl ing and lead to ac-
tive insubordination or more subtle, but equally sabotaging, passive-aggressive
behavior. However, the same highly structured setting may bring out the best in
less-decisive, less-organized, or less-motivated employees. Similarly, a laid-back
offi ce can elicit great work from certain self-directing personality types, whereas
others will not blossom in such ambiguous situations. The stronger and more
clearly defi ned the employee or organizational style, the more likely it is that
“fi t” will be a significant factor in the success of that particular individual. Some
organizations require almost cult-like adherence to their “way,” and they limit
their hiring to individuals willing to buy in to their vision, even if that means
passing up experienced individuals with proven track records. Other, more flex-
ible fi rms may modify their corporate climate and mores if they detect a large
turnover of competent, high-quality employees as a result of overly narrow poli-
cies. When productivity conflicts arise, adjustments that address this particular
dynamic should be included for consideration. There are many organizational
culture issues that you may observe. Here are a few that are especially important
and some suggestions on how to work with them effectively.

11.5.1 Personality and Structure

It can be hard to convince certain people that standards and frameworks are
important in the fi rst place. Individuals may resist adopting set standards for
several reasons. For example, certain very organized personality types prefer
their own internally created systems to those suggested by others. You may ex-
perience these people as being very diffi cult to work with (and they often are).
For those struggling with OCD (obsessive-compulsive disorder) or Asperger’s
syndrome (a high-functioning form of autism), the need to follow their own
standards is diffi cult to subordinate to what may “feel” to them like arbitrary
constraints. The savvy manager will not fi ght this issue head on, but should
focus instead on pointing out how following the required standards will en-
able them to meet their own goals more effi ciently. Once resistant employees
are clear that these standards enhance their own efforts, compliance is usually
100% guaranteed.

Chapter 11 Personality and CM

ptg

11.5 Workplace Culture and Personality 157

11.5.2 We Already Invented All the Good Ideas

Some people just don’t deal well with accepting others’ ideas. This particular prob-
lem crops up time and time again in many different scenarios. I have found that
the most effective way to minimize this distracting behavior is to stress group iden-
tity and foster team building at every opportunity. Linking personal recognition
to group productivity encourages all personality types to bring out the best in one
another. When team members feel a strong allegiance to the group and its mission,
satisfaction can derive from the success of others, as well as from one’s own actions.
Fostering a climate where colleagues regularly compliment the other members for
their part in a team effort increases everyone’s sense that his or her ideas matter.

11.5.3 Loose Cannons Who Don’t Want to Comply

“If it’s a rule, then it probably needs to be broken.” At one point or another in a
professional career, everybody has probably encountered an individual who em-
bodies this philosophy. Whereas you can simply avoid such people in your social
life, contact at work might prove unavoidable. Such behavior is usually a com-
bination of both genetics and early childhood experiences and can be diffi cult
to alter after it has become ingrained. Therefore, the most pragmatic resolution
is often a two-pronged approach: a combination that involves making it clear
what the cost of breaking this rule is, and making sure the individual won’t be
tempted to chance it while simultaneously providing another “innocuous” rule

Bob’s Motorcycle Gang

Bob grew up in the culture of the physically disabled where the only “cool”
people were either blind or otherwise challenged in some way. The cultural
norm was to accept whatever handicap you were stuck with and then fight
ferociously to overcome it. In this context, a person with Asperger’s or
OCD would have been encouraged to be open about the disability (which
does not always work well in the workplace) and battle relentlessly to
compensate. Belonging to this community was a little like being part of a
motorcycle gang, except everyone had “rides” (e.g., wheelchairs) with four
wheels rather than two, and it was a victory when a quadriplegic drank
from a cup without assistance. Although there is a lot more acceptance of
people with handicaps in the workplace today, there remains much more
work still to be done before every able-minded (even if not 100% able-
bodied) individual wanting to work finds employment where their unique
capabilities and expertise can be utilized in the free market despite the pos-
sible need for minor accommodations.

ptg

158

that this person can violate to obtain that adrenaline rush they experience by
beating the system. If you can convince this personality type to view the techni-
cal challenge as the “system” that needs to be beat, so much the better!

Embracing Risk and the Upcoming Audit

Bob has worked with a number of people who became extremely success-
ful by embracing and thriving on risk. This is common in trading envi-
ronments where technology professionals sit next to traders who are very
successful at betting on risk in fast-paced, dynamic environments. Such
scenarios are typical at large investment banks, and these folks often did
not want to hear about process and compliance requirements—that is,
until the internal IT auditors came knocking or a serious loss occurred due
to a software bug that could have been prevented. In these environments,
you need to balance the culture of risk with the protection offered by im-
plementing CM best practices.

11.5.4 Enforcing Process, While Still Keeping the Train Moving

When you have to lay down the law and force technology professionals to fol-
low a standard, you will often hear some grumbling. However, it is helpful to
remind the team that these standards and frameworks have developed from
real-life experience. Nothing motivates like success, and these “rules” have
proven their usefulness time and time again. As your team comes to see that
these guidelines actually do improve their efforts, cooperation will increase cor-
respondingly. Your job is to keep them motivated long enough so that they can
begin to see the fruits of their labor. (Imagine yourself as the caring parent who
daily nags a child to brush his teeth until that youngster learns from personal
experience the inherent value of good oral hygiene, whether from a cavity or bad
breath, and gradually develops the self-discipline to continue without external
prompting.) Once the CM process is implemented enough for the team to ap-
preciate the power and benefi ts of these safeguards, you can usually count on
them to self-monitor.

11.5.5 Formulas for Success

Building consensus and acknowledging every member’s ideas are essential build-
ing blocks. Even the most resistant individuals become more compliant when
recognized by others. In general, when people feel valued for their contributions
on a routine basis, there is less need to act out or gain attention in other, and

Chapter 11 Personality and CM

ptg

159Conclusion

possibly counterproductive, ways. Emphasizing the rewards for compliance and
group success is usually more effective than threats or coercion. Knowledge of
personality types and excellent interpersonal skills can help the astute IT man-
ager to keep each member of his team “within bounds.”

11.5.6 Caveats

Everything we have discussed so far is backed up by both research and experi-
ence. That said, however, remember that the information presented is just that,
interesting facts, not predictions or prescriptions. I have endeavored to present
a rich array of personality matters that have been found to signifi cantly impact
an individual’s work performance and the group environment. However, each
particular situation is unique, and no one-size-fi ts-all solution exists which is
capable of addressing every given issue. The parties involved must review the
relevant personality factors and use this awareness to guide their future interac-
tions. There is no denying that personality matters, both at home and at work.
So the more we know about ourselves and our colleagues, and the dynamics that
result, the more successful we can be.

Conclusion

Everyone, no matter how mellow and/or flexible he or she may appear, has a
distinct personality that tends to be fairly stable and consistent. And these per-
sonalities result in each of us having certain processing and interaction patterns
that are more comfortable for us. We carry these preferences with us at all times
and, although at times with focused effort we can override a specifi c natural
tendency, they remain our “set point” and usually determine our automatic
fi rst response. Deepening the understanding and awareness of our own and oth-
ers’ personalities is key to maximizing everyone’s potential. Although we might
only be able to modify our basic nature a given amount, there is no limit to the
number of adaptive strategies the motivated individual can dream up to enhance
and improve his or her ability to get along better with others. I hope that the
information presented in this chapter sparks your curiosity and provides the
raw ingredients you need to cook up some novel “tactical recipes” of your own
(which effectively address your specific and unique personality challenges, both
internal as well as those you encounter as you try to enhance your collabora-
tions with others).

ptg

This page intentionally left blank

ptg

Chapter 12

Learning From Mistakes That
I Have Made

Chapter Overview

12.1 Why Is It Important to Learn from Our Mistakes? 162

12.2 Where Do I Get Started? 162

12.3 Understanding Our Mistakes 163

12.4 The Mistakes I Have Made 163

12.5 Turning a Mistake into a Lesson Learned 166

12.6 Common Mistakes That I Have Seen Others Make 167

Mistakes are good, especially when you learn from them. I cannot say that I
have always been effective in reaching my goals as a hands-on process-improve-
ment professional. There have definitely been times when I have failed or at least
not achieved as much as I had expected of myself. But I do know that I have
always tried my best, and I have always thought long and hard about why my
performance may have been less than optimum, including how I could improve.
With each new assignment, I have tried to reinvent myself, often excelling at the
very task that I had previously fallen short on at the previous position. Learning
from our mistakes is fundamental. There are also times when we can observe
and learn from the mistakes of others. Here is a short description of some of my
own lessons learned working to implement CM best practices.

This chapter is all about understanding our mistakes and how to learn from
them. I describe a few of my many mistakes, including missing the big picture,
thinking that a good process will just carry itself, and failing to gain consensus. I

161

ptg

Chapter 12 Learning From Mistakes That I Have Made111666222

have also had times when I failed to show leadership for CM or, even worse, be-
came part of the problem. There were times when I forgot to ask for help when
I really needed it, including clarifying what I needed in order to get the job done.
I have also seen others who were so ivory tower that they were not effective.
Similarly, I have seen others who were afraid to get their hands dirty by getting
technical and hands-on along with a fear of being honest and open.

Goals of Learning from Mistakes

The fi rst goal of learning from mistakes is to be the best that we can be in
terms of designing and implementing process-improvement interventions that
are practical and effective. In my work, this specifically means that I want to
defi ne CM best practices that support the application and systems development
process. There is obviously also a self-improvement goal here, too. We all want
to be the best that we can be. Taking a hard look at how we did and how we
can improve is essential.

12.1 Why Is It Important to Learn from Our Mistakes?

Learning from our mistakes is as important as breathing the air around us. If
you don’t learn from your mistakes, you are doomed to make the same mistakes
over and over again. Worse yet, you will never grow and improve. W. Edwards
Deming, regarded by many as the father of quality management, said it best
with his view that we have to “drive out fear,” and nowhere is that more impor-
tant than in honestly and accurately evaluating our own mistakes.

12.2 Where Do I Get Started?

It’s been my experience that this is one situation where it is easy to get started
because lots of people are willing to point out others’ mistakes. If you let people
know that you are open and willing to improve, then you have already started
this journey, which is essential on both a personal and professional level. Start
with being honest and candid and then hold on as the roller coaster to self-
improvement takes over!

ptg

12.4 The Mistakes I Have Made 163

12.3 Understanding Our Mistakes

Mistakes are not bad, although the consequences of our mistakes can certainly
be very bad indeed. When a release manager makes a mistake, large computer
systems can fail with significant impact, including the loss of millions of dollars.
Mistakes are good if we learn from them and improve. The first step is to ration-
ally and coldly examine what we did and how our actions impacted the results.
The fact is that your team needs to know that it is okay to make mistakes. They
also need to know that it is only okay if they admit the mistake so that the team
can work together to make things better. I have seen situations where the fear of
admitting a mistake adversely impacted the team’s ability to improve their proc-
esses, including release management. Deming had as one of his legendary 14
points, “Drive Out Fear.” I believe that the reason this was one of his 14 points
is that fear within the workplace adversely impacts quality because members of
your team will be afraid to speak up and give their input. Obviously, admitting
our mistakes is an essential aspect of a well-functioning team. I admit some of
mine in the next section.

12.4 The Mistakes I Have Made

I recount my sins here not to get them off my chest but so that you can learn
from them. Although it is okay to make mistakes, it is always better to learn
the easy way than the hard way. Just like lifting weights is a journey to gain-
ing strength and physical fitness, learning from mistakes is a journey to self-
improvement on many levels. I recall having a discussion with a couple of my
colleagues in which I began to calmly and coldly start discussing the mistakes we
had made. No one disagreed that we had made some mistakes and that the fi rm
(and each of us personally) suffered as a result. The mistakes cost us money and
missed opportunities. It was also unclear that any of us were really “to blame”
for the mistakes. I was not looking to blame anyone, but I wanted to understand
what we had done and work on solving the problems. What did interest me was
that my colleagues were extremely uncomfortable discussing mistakes. Don’t be.
If you can take this walk with me, you can truly achieve excellence. Let’s relax
and take an honest look at some of these common mistakes.

12.4.1 Missing the Big Picture

One mistake that I have found myself making, from time to time, is missing the
big picture. I have always focused on getting into the trenches and doing the
day-to-day hands-on work that is needed for all aspects of confi guration man-
agement. I like to build the release, understand all the requirements to support

ptg

Chapter 12 Learning From Mistakes That I Have Made164

the environment, and especially dig deep into all the detailed technical steps
needed to automate the release management process. I usually find that digging
into the details and coming up to speed is an all-consuming task that can be
challenging. I have sometimes found myself so focused on handling the details
that I forgot to come up for air and look around me. I think that a lot of people
make this mistake, and it is almost inevitable. When you are knee deep in a task
and making progress, it can often be hard to recognize that you missed the larger
perspective, and that is a bad mistake to make. An example of this problem is
trying to handle all the automation tasks myself when I should have asked for
help sooner. Deep down, I know that I was trying to prove that I could do the
work and solve the technical challenge myself. The larger goal was to fi x the
release management process and not make Bob a champion Perl scripter. This
is a tough challenge for me because I really love writing the automation myself,
and yet sometimes, it is better to handle this task as a team sport.

12.4.2 Writing Release Automation Can Be Challenging

As a release engineer, I often work on many different platforms. One week, I
might be deep in releasing Java Web Services on UNIX (or Linux), and two days
later, I will be working with C# and .NET on a high-end Wintel platform. In the
same month, I might work with the mainframe guys who are deploying Cobol
copybooks on an IBM mainframe using ISPF. Release automation can be chal-
lenging, especially when you are working across many platforms. The develop-
ers usually have considerably more to time to learn a platform and often special-
ize on a particular technology. Good release engineers can work on any required
platform. Writing the automation to handle the release management process
requires some knowledge of the platform and the technology. Creating release
management automation adds value by improving both quality and productivity
by allowing developers to rapidly build, package, and deploy applications. This
is the very best part of being a release engineer. But, it is also the most challeng-
ing part, too. The first time that I tackled Java SOA using Hybernate was indeed
challenging for me. I recall being so consumed with coming up to speed that, at
times, I forgot to ask for help. I really wanted to understand it all, although my
job was to create a fool-proof release management process (and not to become
a Java architect). That said, there was often no one else available to help me, so
often, I was on my own. Nonetheless, don’t forget to focus on the big picture
of what you are trying to accomplish and identify any possible risks that might
impact your success.

ptg

12.4 The Mistakes I Have Made 165

12.4.3 Thinking That a Good Process Will Carry Itself

Early in my career, I focused on learning to define good processes that were as
clear and as comprehensive as possible. My processes were great because they
were repeatable and covered all the necessary steps, but I often forgot to ef-
fectively market my ideas and approaches to others. Release management is a
service and support function that requires effective skills in communication to
achieve success. A good process will not just carry itself automatically. You need
to effectively market and promote your ideas to others.

12.4.4 Failing to Gain Consensus

Years ago, the process-improvement mantra was focused on the importance of
gaining senior management buy-in for the process-improvement effort. That is
certainly a necessary step, but it is also not sufficient. It is often essential for you
to also work from the bottom up at the same time, and especially work toward
gaining consensus among all the stakeholders. I recall times when I felt armed
and validated by gaining senior management support, only to discover just how
clever my colleagues could be in working around the processes that I was trying
to establish. If you review your processes with all the stakeholders and then gain
their consensus, you will be more effective in achieving your goals. Failing to
gain consensus is a mistake that you should not make!

12.4.5 Failing to Show Leadership for CM

Gaining consensus is great, but CM also requires leadership. You should not
fall into the trap of analyzing too long when your best approach would be to
put forth a fi rst draft of our recommended process. As a CM guru, you are
expected to provide leadership and demonstrate how and why CM best prac-
tices add value. Make sure that you step up to plate and lead the way! I always
enjoy becoming entrenched and a member of the development team. Software
development is certainly a team sport, but there is also a danger in becoming an
embedded member of the development team.

12.4.6 Becoming Part of the Problem

I am usually called into a group when there is a problem. The group often knows
that it is in trouble, and it is not uncommon for some people to feel defensive
and concerned about their jobs. When trying to understand why there are prob-
lems, I listen and observe the group dynamics. When I diagnose the problems
and start to recommend interventions, I try to become part of the solution by
actively getting involved with building, packaging, and deploying the releases.

ptg

Chapter 12 Learning From Mistakes That I Have Made166

There have been times when I found myself becoming part of the problem. This
is often diagnostic, but there is also a danger of getting sucked right into the
abyss of the problem that caused the organization to solicit my services in the
fi rst place. For example, there have been times when I found that the technology
just had too many moving parts and was too complex for anyone to tame the
release management process. At times like these, I often dived deep into the tech-
nology and was no more successful at solving the release management problems
than anyone else. If you discover that you have become part of the problem, take
a step back and reevaluate your recommended interventions. This is not a bad
thing, though, because after you have seen the problem at this level of detail, you
will have a much more credible idea of how to solve the issues that need to be
addressed. Watch out for becoming part of the problem and, when appropriate,
make sure that you define and communicate the risks that confront the organi-
zation. You also should communicate whether help from other members of the
team can help you get your job done better.

12.4.7 Forgetting to Ask for Help

Don’t forget to ask for help when you need it. Release engineers are responsible
for creating automated and repeatable processes. You may have a good devel-
opment background, but as the technology changes (and it changes fast), you
might need some help to stay on top of what the development team is doing. The
best way to handle this is to defi ne the risks and tasks that need to be accom-
plished. Then, you should communicate how help from the rest of the team will
help you be more productive or effective. Remember that you are a member of
the team and the important thing is that the team needs to be successful. Make
sure that you pragmatically define what you need to get done to be successful.

12.5 Turning a Mistake into a Lesson Learned

So, how exactly do you turn a mistake into a lesson learned? The most basic
approach is to honestly and fairly evaluate the action without regard for who
is involved. If you can be honest with yourself, you are already halfway there.
Here are a few that I have personally experienced.

12.5.1 Clarifying What I Need to Get the Job Done

It is common for you to initially not really know what you need to get the job
done. There are often many unknowns, and the situation may change faster than
you can adjust to. Make sure that you proactively communicate what you really
need to get the job done. This may seem obvious, but those around you may not

ptg

12.6 Common Mistakes That I Have Seen Others Make 167

have a clear idea of how they can help you. More important, your management
also needs to know what you need to get the job done. One important area to
consider is to clarify the training that you need to be effective.

12.5.2 Getting the Training That I Need

Training is essential. If you do not know how to work with the technology, you
will just not be successful. It is common for release engineers to have frequent
steep learning curves. Make sure that you communicate your training needs and
how that will help you do your job more effectively. I have occasionally made
the mistake of trying to learn everything on my own. I can recall times when
I saw my productivity improve dramatically after I received the training that I
needed.

12.6 Common Mistakes That I Have Seen Others Make

There are a few mistakes that I have seen other folks make often, although I
can’t claim that these have been my issues. In the interest of clarity, I present
them here and invite you to evaluate whether they fit you yourself.

12.6.1 Ivory Tower

Too many process-improvement practitioners are lost in their ivory towers. I
have worked with many people who knew process models well, but had never
actually done any of the day-to-day work, such as building, packaging, and
deploying a release. I may upset a few people with my opinion on this issue, but
I believe that process-improvement experts are more effective if they have some
hands-on experience. If that’s not possible (and obviously, that is often the case),
make sure that you sit next to us and get a realistic feel for the trench-level view
of the work that we do! Ideally, getting some technical knowledge and expertise
will help you be more effective at implementing CM best practices.

12.6.2 Failing to Get Technical and Hands-On

This is one mistake that I just don’t ever make. I am always working to be
hands-on and technical. But many of my colleagues, in the process-improvement
fi eld, fail to get their hands dirty with learning the technology at a deep and
meaningful way. You don’t have to be a Java architect, but getting technical
knowledge and hands-on experience will certainly enable you to be more effec-
tive. It will especially make you more believable.

ptg

Chapter 12 Learning From Mistakes That I Have Made168

12.6.3 Not Being Honest and Open

Some people are too busy worrying about whether they look like they know
what they are doing. Personally, I believe that this is real waste of time and ef-
fort. It is much better to be honest and open in everything that we do. Again, I
would be on the other side of the continuum for being too honest and open. In
fact, I have occasionally gotten into trouble for openly admitting that I did not
know something (instead of just trying to bluff my way through). I must admit
that sometimes people don’t know how to process this information, and they
may even lose confi dence in my abilities. I fi nd it much more comfortable to be
completely open with what I know and don’t know even if this sometimes results
in people losing some confi dence. Don’t worry when you get in my ambulance;
I show complete confidence because that is what you need to hear at that time
to feel comfortable. There is a time to show confi dence because it is in the best
interest of your patient. The rest of the time, you can expect me to be open and
candid about what I know and don’t know, and I encourage you to be the same!

Conclusion

Mistakes are not bad. Learning from our mistakes is essential and effectively
part of any CM guru’s own internal process-improvement effort. It is important
to make learning from your mistakes a key part of your process-improvement
efforts.

ptg

P A R T I V

Compliance,
Standards, and
Frameworks

ptg

This page intentionally left blank

ptg

Chapter 13

Establishing IT Controls and
Compliance

Chapter Overview

13.1 Why Are IT Controls and Compliance Important? 173

13.2 How Do I Get Started? 173

13.3 Understanding IT Controls and Compliance 174

13.4 Essential Compliance Requirements 181

13.5 The Moral Argument for Supporting CM Best Practices 182

13.6 Improving Quality and Productivity Through Compliance 183

13.7 Conducting a CM Assessment 183

Confi guration management plays an essential role in establishing IT controls
and compliance by implementing the best practices required to pass an audit and
establish IT governance. The most common IT controls include the ability to
track and control changes to production systems and the prevention, detection,
and remediation of any unauthorized changes. IT controls also include security
and a central goal of providing accurate reports (used by senior management to
govern the organization). Compliance refers to meeting the requirements of a
particular standard or framework mandated by an outside regulatory authority,
the company itself, or contractual obligation. At the center of this topic is IT
governance, which means that senior management has visibility into the organi-
zation and can make accurate decisions based on the information available. I al-
ways define IT governance as providing visibility to senior management so that
they can make the right decisions based on accurate and up-to-date information.

171

ptg

Chapter 13 Establishing IT Controls and Compliance111777222

In this chapter, I quote specifi c laws and compliance requirements that I have
found helpful in demonstrating that CM best practices are often required by fed-
eral law. What is also interesting is that there have been a number of high-profile
incidents where corporations and government agencies failed to establish ac-
ceptable controls and were then cited in a public forum that you can easily read
about today. Confi guration management experts are often required to conduct
an assessment of the existing practices. We should always promote compliance
with all legal requirements and realize that the effort to comply itself is usually
an opportunity to improve quality and productivity, too. In this chapter, we ex-
amine how to meet compliance requirements through CM best practices. I also
describe how to conduct an assessment of configuration management practices.

This chapter focuses on understanding IT controls and compliance, including
section 404 of the Sarbanes-Oxley Act of 2002 and the management assessment
of internal controls. It also covers the Committee of Sponsoring Organizations
(COSO) and the use of Cobit as a framework for IT controls and what it means
to attest to and report on the assessment made by the configuration management
team. Other compliance requirements, such as the Health Insurance Portability
and Accountability Act of 1996 (HIPAA), are described and what happens when
the Government Accountability Offi ce (GAO) or the Offi ce of the Comptrol-
ler of the Currency (OCC) comes knocking on your door. Understanding the
results of the audit is explained with examples, including GAO reports on Na-
tional Archive and Records Administration (NARA) configuration management
practices and the Electronic Records Archive (ERA) confi guration management
plan, along with areas for improvement. Then, this chapter describes the related
role of Offi ce of the Comptroller of the Currency (OCC) and some of the essen-
tial compliance requirements, including providing traceability of requirements
to releases, production separation of controls, and I suggest a moral argument
for supporting CM best practices and how to improve quality and productivity
through compliance. Finally, this chapter provides some guidance on conduct-
ing a CM assessment, including how to get started and a reminder to always
listen fi rst regardless of how bad the situation initially appears.

Goals of Establishing IT Controls and Compliance

The goal of establishing IT controls and compliance is to implement procedures
that bring IT governance into alignment with corporate governance. The most
classic case is to establish controls that ensure that financial reports are accurate.
Compliance is usually implemented based on an established standard or frame-
work. This means that the IT controls established conform to the recommenda-
tions specified in the framework mandated by a regulatory agency or adopted by
the organization. For example, most financial services firms are required to have
a separation of duties between the physical control of assets, such as a payroll

ptg

13.2 How Do I Get Started? 173

or banking system, and those who have responsibility for developing and main-
taining these systems. They should also have appropriate security measures in
place that prevent unauthorized access and, of course, modifi cation (for exam-
ple, fi xing a release in production). In the event of unauthorized access, detec-
tion and audit controls should make remediation possible, if necessary, by roll-
ing back and reinstalling a release as described in Chapter 6, “Deployment.” In
this chapter, we also have a goal of examining regulations that may be useful
when you need to overcome resistance to change. Used sparingly, I have found
it effective to mention that CM is often required by federal law and the absence
of CM best practices will often trigger a report by the audit team if appropriate
IT controls are not in place. I also want to note that although I have worked
in government agencies, engineering, defense contractors, and financial services
fi rms, and have personal knowledge of compliance violations related to poor
CM practices, I have been careful to provide only information that is publicly
available. No doubt, many senior managers have compliance and governance
very high on their priority list and are proactive in addressing these issues. When
most professionals think of IT controls and governance, they generally think of
Sarbanes-Oxley (SOX) compliance.

13.1 Why Are IT Controls and Compliance Important?

IT controls are essential for a number of reasons. The most obvious is that many
organizations have to comply with federal laws. I believe that good corporate
citizenship should be an even more compelling reason to make sure you are
in compliance. The rules that we discuss just make sense, and organizations
should comply regardless of whether their lawyers have found some way to
avoid compliance (as a regulatory requirement). One serious area of concern is
that many hedge funds today do not have to comply with establishing IT con-
trols and compliance. Sometimes, this results in organizations where production
passwords are openly shared and there is no separation of controls. I believe
that this is a huge mistake and that the compliance laws should apply equally to
all fi nancial services firms. The same is true for firms in the pharmaceutical and
medical industries. I also strongly advocate that the journey to implement these
IT controls should be focused on improving quality and productivity and not
just simply passing an audit. Implementing these controls just makes sense, and
their successful implementation is essential for any organization.

13.2 How Do I Get Started?

You should get started by evaluating your own risk profi le. What are the things
that go wrong with your systems? Could you accidentally make a million-dollar

ptg

Chapter 13 Establishing IT Controls and Compliance174

trade resulting in signifi cant losses for your fi rm and your shareholders or ex-
pose confi dential employee information? Could you accidentally expose confi -
dential patient information in violation of HIPAA regulations? Obviously, the
risk of causing a problem in a life-support system is more critical than exposing
your favorite social-networking password. But these days, there are many risks
and consequences. I recall one recent incident where my own university exposed
the social security numbers of thousands of students on a website. You need to
start by considering your organization’s profiles and priorities. Then focus on
making your journey to implement IT controls and compliance an effort that
focuses on improving quality and productivity.

13.3 Understanding IT Controls and Compliance

Many of the compliance models are actually well thought out, and you can learn
a lot from studying them and the standards and frameworks that have evolved
to support them. Make sure that you reach out to other professionals to under-
stand existing best practices. While you are at it, make sure that you come over
to my website (http://cmbestpractices.com) to share best practices!

13.3.1 Sarbanes-Oxley Act of 2002

The Sarbanes-Oxley Act of 2002 was originally written by Senator Paul Sar-
banes and Representative Michael Oxley as a response to several high-profi le
corporate scandals, including that of the much publicized Enron Corporation.
In the Enron fi asco, shareholders (many of whom were employed by the com-
pany) suffered huge losses, and a complete breakdown in corporate governance
occurred. The purpose of the SOX legislation was to hold senior management
responsible for seeing that financial reports were accurate and that there was full
fi nancial disclosure and transparency in corporate governance. In short, SOX
requires that companies have accurate fi nancial reports and that they also es-
tablish proper IT controls. Section 404 of SOX specifi es the requirements for
management assessment of internal controls.

13.3.2 Management Assessment of Internal Controls

As specifi ed in the text of the act, section 404 requires internal controls and ac-
curate reporting: 1

1 Sarbanes Oxley Act of 2002, section 404

http://cmbestpractices.com

ptg

13.3 Understanding IT Controls and Compliance 175

a. RULES REQUIRED. The Commission shall prescribe rules requiring each
annual report required by section 13(a) or 15(d) of the Securities Exchange
Act of 1934 (15 U.S.C. 78m or 78o(d)) to contain an internal control
report, which shall—

1. state the responsibility of management for establishing and maintaining an
adequate internal control structure and procedures for financial reporting;
and

2. contain an assessment, as of the end of the most recent fi scal year of the
issuer, of the effectiveness of the internal control structure and procedures
of the issuer for financial reporting.

b. INTERNAL CONTROL EVALUATION AND REPORTING. With re-
spect to the internal control assessment required by subsection (a), each
registered public accounting fi rm that prepares or issues the audit report
for the issuer shall attest to, and report on, the assessment made by the
management of the issuer. An attestation made under this subsection shall
be made in accordance with standards for attestation engagements issued
or adopted by the Board. Any such attestation shall not be the subject of a
separate engagement.

After SOX was passed, a number of organizations began working on es-
tablishing an effective control framework so that corporations would have ad-
equate guidance and could comply with the requirements set forth under law.
One of the first organizations to work on this effort is known as COSO.

13.3.3 Committee of Sponsoring Organizations

The Committee of Sponsoring Organizations of the Treadway Commission
(COSO) is a voluntary private-sector organization comprising a number of well
respected industry leaders, including the American Accounting Association (AAA),
American Institute of Certified Public Accountants (AICPA), Financial Executives
International (fei), The Association for Accountants and Financial Professionals in
Business (ima), and the Institute of Internal Auditors (IIA). COSO is dedicated to
guiding executive management and governance entities toward the establishment
of more effective, efficient, and ethical business operations on a global basis. It
sponsors and disseminates frameworks and guidance based on in-depth research,
analysis, and best practices. In 1992, the Committee of Sponsoring Organizations
outlined five essential components of any internal control system: 2

2 COSO website (http://coso.org)

http://coso.org

ptg

Chapter 13 Establishing IT Controls and Compliance176

1. Control Environment

2. Assessment of Risk

3. Control Activities

4. Accounting, Information, and Communication systems, and

5. Self-Assessment or Monitoring

Most organizations use the ISACA Cobit framework for guidance on imple-
menting IT Controls.

13.3.4 Cobit as a Framework for IT Controls

Although COSO is generally considered a proper starting point for establishing
fi nancial controls, Cobit is commonly used to assess IT controls. In the Cobit
framework, there are 34 high-level IT processes and 34 control objectives. These
control objectives include guidance on establishing change and configuration
management. I have been the person responsible for attesting that these two IT
controls were in compliance in a large financial services fi rm.

13.3.5 What Does It Mean to Attest to And Report on the
Assessment Made by the Management?

Section 404 (of the Sarbanes Oxley Act of 2002) requires that “with respect to
the internal control assessment required by subsection (a), each registered public
accounting firm that prepares or issues the audit report for the issuer shall at-
test to, and report on, the assessment made by the management of the issuer.”
In practice, this meant that the public accounting firm established a tool for the
organizations’ subject matter experts (SMEs) to attest to compliance with each
of the 34 required Cobit controls. This was supposed to involve assessing cur-
rent practices and then attesting to compliance. Where noncompliance existed, I
proactively worked with the development teams to improve their CM practices
so that they could pass their next audit. Even if the teams failed the first time, the
important issue, from a compliance perspective, was that we had a short-term
plan to help them quickly come into compliance. In most cases, this took less
than a month. Unfortunately, I have also seen organizations where this effort
was little more than a rubber stamp. In fact, I recall one incident where a senior
manager, in charge of compliance, expected that the attestation would happen
before the groups were reviewed and assessed! I personally felt that this organi-
zation obviously did not take SOX compliance seriously, and that was truly a
lost opportunity, because these best practices can improve both productivity and
quality.

ptg

13.3 Understanding IT Controls and Compliance 177

We will examine further how to meet the requirements of these control prac-
tices in Chapter 14, “Industry Standards and Frameworks.” Cobit is a common
framework, but it is not the only source of information on IT governance. Many
pharmaceuticals and medical firms need to comply with HIPPA regulations.

13.3.6 Health Insurance Portability and Accountability Act of 1996

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Pri-
vacy Rule protects the privacy of individually identifiable health information.
The Patient Safety Rule also has confi dentiality provisions that protect iden-
tifi able information from being used to analyze patient safety events and im-
prove patient safety. I have had technology professionals from pharmaceutical
companies contact me to implement IT controls that were very similar to those
required by SOX and Cobit. In both cases, the organization has to comply with
regulations that are described in a specifi c framework. I have been told that
pharmaceutical companies may have their IT controls subject to review by agen-
cies such as the FDA. I have had more experience with supporting agencies that
were being reviewed by the Government Accountability Offi ce (GAO) and the
Offi ce of the Currency (OCC). The OCC reviews the practices in the banking
industry, but it is the GAO that reviews government agencies and the subcon-
tractors that work for them.

13.3.7 When the GAO Comes Knocking

The GAO describes the results of their reviews on their public website. For
example, the GAO reviewed and commented on the configuration management
practices used by the Federal Deposit Insurance Corporation (FDIC). The GAO
cited several areas where the FDIC configuration management controls needed
to be improved. For example, in May 2008, the GAO issued a report that said
that there were weaknesses in confi guration management controls in two key
FDIC financial systems. The GAO report stated that the FDIC did not adequate-
ly (1) maintain a full and complete baseline for system requirements; (2) assign
unique identifiers to confi guration items; (3) authorize, document, and report all
confi guration changes; and (4) perform confi guration audits. This was not the
fi rst time that the FDIC had come under scrutiny for inadequate configuration
management controls. In 2005, the FDIC Office of Inspector General (OIG) re-
tained the services of the International Business Machines (IBM) Business Con-
sulting Services to audit and report on the effectiveness of the FDIC’s configura-
tion management controls over operating system software. 3

3 FDIC’s Information Technology Configuration Management Controls over Operating
System Software, report number 05-031, September 2005, Office of Inspector General

ptg

Chapter 13 Establishing IT Controls and Compliance178

The report also noted that configuration management is a critical control for
ensuring the integrity, security, and reliability of information systems. Absent
a disciplined process for managing software changes, management cannot be
assured that systems will operate as intended, that software defects will be mini-
mized, and that confi guration changes will be made in an effi cient and timely
manner. The objective of the audit was to determine whether the FDIC had
established and implemented configuration management controls over its oper-
ating system software that were consistent with federal standards and guidelines
and industry-accepted practices. 4

13.3.8 Results of the Audit

The FDIC had established and implemented a number of confi guration man-
agement controls over its operating system software that were consistent with
federal standards and guidelines and industry-accepted practices. Such controls
included a software patch management policy, a change control board, and pe-
riodic scanning of operating system software configurations. These actions were
positive; however, control improvements were needed. Specifically, the FDIC
needed to establish an organizational policy and system-specific procedures to
ensure proper confi guration of operating system software. The FDIC also need-
ed to standardize and integrate the recording, tracking, and reporting of operat-
ing system software configuration changes to the extent practical.

In the report, IBM recommended that the FDIC

●

Establish an organizational policy that defi nes roles, responsibilities, and
overall principles and management expectations for performing configura-
tion management of operating system software

●

Develop confi guration management plans that include system-specific pro-
cedures for managing the configuration of operating system software

● Ensure that the certification and accreditation of the FDIC’s general sup-
port systems incorporate an evaluation and testing of the confi guration
management policy and plans referenced above

●

Fully document the minimum required configuration settings for the oper-
ating systems covered in this review, and develop procedures to ensure that
changes to baseline configuration settings are documented

● Standardize and integrate the recording, tracking, and reporting of con-
fi guration changes within and across operating system software platforms
to the maximum extent practical

4 Ibid

ptg

13.3 Understanding IT Controls and Compliance 179

The GAO report on the FDIC is certainly a good example of a government
agency being cited for having inadequate configuration management controls in
practice. This was not the first time that the GAO had explicitly assessed and
reviewed an agency’s IT controls citing both inadequate configuration manage-
ment practices and a failure to follow related IEEE standards.

13.3.9 GAO Reports on NARA’s Configuration Management
Practices

Since 2001, the National Archives and Records Administration (NARA) has been
working to develop the policies and plans to build the Electronic Records Archives
(ERA), a major information system intended to preserve and provide access to
massive volumes of all types and formats of electronic records. Senate Report
108-146 directed GAO to provide a progress report on NARA’s development of
the ERA system. Specifically, the GAO’s objective was to determine the agency’s
progress in implementing recommendations from previous assessments. 5

13.3.10 ERA Configuration Management Plan

A confi guration management plan establishes and maintains the integrity and
control of the products through their lifecycles. The IEEE standard for con-
fi guration management plans has elements that include configuration activities
and configuration schedules. Configuration management activities include the
following:

● Listing items to be placed under configuration control

● Procedures for approving or disapproving changes

● A system for naming configuration items

● Verifying and implementing approved changes

● Assembling information for documenting a completed change

● Confi guration status accounting (including data elements to be tracked;
types and frequency of reports; how information is to be collected, stored,
processed, and reported; and how access to status data is to be controlled)

●

Analysis and evaluation of change requests, subcontractor control, and
confi guration audits and reviews

5 United States Government Accountability Office Report to Congressional Committees,
September 2004, RECORDS MANAGEMENT Planning for the Electronic Records Ar-
chives Has Improved - GAO-04-927

ptg

Chapter 13 Establishing IT Controls and Compliance180

Overall, the ERA Configuration Management Plan fully satisfied 4 (21%),
partially satisfied 11 (58%), and did not satisfy 4 (21%) of the 19 applicable
subject areas in the IEEE standard. 6

13.3.11 Areas for Improvement

The ERA Configuration Management Plan, however, only partially satisfi es
other areas of the standard, including the following, for example:

● The plan specifi es the activities for verifying and implementing approved
changes, but it does not specify any of the information needed to docu-
ment completion of a change.

●

Although it includes some of the information required for configuration
status accounting, such as data elements to be tracked and types and fre-
quency of reports, it does not mention the specifi c software package used
to collect, store, process, and report the status of items under configuration
control or how access to status data is to be controlled.

The plan does not satisfy several important aspects of the IEEE standards,
including7

● Having a schedule for confi guration management activities and for all
events affecting the plan’s implementation

● Specifying how subcontractor configuration management activities are to
be monitored

● Including defi nitions of confi guration audits and reviews such as the con-
fi guration items under audit or review, procedures for conducting the au-
dit, and approval criteria

13.3.12 Understanding the Results of the Audit

There are a number of interesting results in this audit. The importance of having
an SCM plan based on a recognized standard is highlighted in several places.
For example, procedures for configuration identification and conducting a con-
fi guration audit were clearly a priority for both the GAO and the OIG. I also

7 Ibid

6 Ibid

ptg

13.4 Essential Compliance Requirements 181

fi nd it interesting that the use of IEEE standards as a valid set of guidelines
for implementing CM best practices was explicitly cited, too. This is not the
only government agency directly concerned with compliance with configuration
management best practices. I have also received calls from technology profes-
sionals who work for banks that have been cited by the OCC.

13.3.13 Offi ce of the Comptroller of the Currency

The OCC was created by Congress to charter national banks, to oversee a na-
tionwide system of banking institutions, and to ensure that national banks are
safe and sound, competitive and profi table, and capable of serving in the best
possible manner the banking needs of their customers. The OCC issued guide-
lines on internal controls.

The OCC has also identified cases resulting in bank losses in which internal
control weaknesses included improper and untimely reconcilements of major
asset or liability accounts. In others, the bank did not institute or follow normal
separation of duties between the physical control of assets and liabilities and the
record-keeping functions involving those assets and liabilities. 8

In practice, banks need configuration management best practices to maintain
a separation of duties between the software developers who write the code and
the operations teams that maintain the production systems. The calls that I have
received were about getting build engineers in place to compile, package, and
deploy the code in a repeatable and traceable way. I have worked in organiza-
tions where the developers would do their own build and deployment, which
was very bad for many reasons. In most cases, the procedure was not repeatable,
and the developers relied on being able to access production to fi x last-minute
problems that had been overlooked. This meant that their build and deployment
was just broken, the operations team could not roll back to a previous release,
and there was little or no traceability into changes that were made to production
systems. I am not blaming the developers. They were focused on writing great
code. Another team was needed to provide traceability and repeatable deploy-
ment processes.

13.4 Essential Compliance Requirements

You will have to work with your own internal compliance experts to be certain
that you know all of your own compliance requirements, but I will describe a
few that I have personally come across in my own work and know are common

8 Internal Controls - A Guide for Directors, Offi ce of the Comptroller of the Currency,
Washington, D.C., September 2000

ptg

Chapter 13 Establishing IT Controls and Compliance182

in many organizations. The fi rst is requirements traceability and the separation
of controls between development and production.

13.4.1 Providing Traceability of Requirements to Releases

One of the most common compliance controls is to have traceability from the
requirement as it was envisioned all the way through the lifecycle to the deploy-
ment of the release. In some organizations, this is a formal process with require-
ments tracking. In other environments, it is handled a little more loosely, with just
some release notes that document exactly what went into a release. The goal is to
make sure that requirements are never lost and changes deployed and promoted
to production are fully traceable back to the authority who authorized the change.

13.4.2 Production Separation of Controls

We have already mentioned the requirement for a separation of controls. This
is a particularly important requirement because it can avoid many of the prob-
lems central to the purpose of IT governance. Simply put, it is essential that the
developers who write the code are not the people who operate and control the
production environment. If this requirement is not met, the organization has a
number of risks that could harm the fi rm and obviously the shareholders, too.
It’s been my personal observation that requiring a separation of duties improves
quality and productivity by facilitating the implementation of a set of repeatable
processes to support application release and deployment. If the procedures are
implemented properly, the operations team should be able to promote a release
into production and roll it back if necessary. This is a good example of where
a compliance requirement can result in CM best practices that truly add value
and help support the organization’s critical systems. I also believe that there is a
moral argument for why CM best practices should be adopted.

13.5 The Moral Argument for Supporting CM Best
Practices

Society relies more on technology each day. I always use the following example
when I consider the moral argument for establishing effective IT controls. Sup-
pose you really need to get cash from your bank on a Saturday night and the
system is down because the bank has cut corners that resulted in a CM-related
error. In this example, I am suggesting financial institutions have an obligation
to implement effective IT controls because of their impact on their customers,
shareholders, and society as a whole. I strongly believe institutions should just
be willing to implement these practices as good corporate citizens. I also believe

ptg

13.7 Conducting a CM Assessment 183

that implementing IT controls and compliance is a great opportunity to improve
organizational quality and productivity.

13.6 Improving Quality and Productivity Through
Compliance

Focusing on compliance as a requirement to just pass an audit is, at best, a missed
opportunity. Preparing for a compliance audit should always be an opportunity
for an organization to identify what they are doing well and what practices they
can improve. I have found it disappointing when the organization repeatedly
focused on just getting past the yearly or quarterly audit. Instead, improving
productivity and quality should be the goal of any review of existing practices
and a central part of continuous process improvement. Of course, management
must show leadership in this regard and provide time and resources to achieve
these goals. Learning to conduct your own CM assessment is a great skill that
will help you use this time to improve your organizational best practices and
especially your organization’s quality and productivity.

13.7 Conducting a CM Assessment

Conducting a confi guration management assessment is a lot of fun. I have had
this opportunity as both an internal member of the organization and an outsider
coming in to essentially perform an audit and provide recommendations for im-
provement. In most cases, I worked closely with the organization’s audit team in
creating the criteria and framework for the assessment. Sometimes, I focused on
teaching the auditors to look for items that were valid and to avoid minor issues
that might sound important but were not really serious violations. In fact, I have
seen assessments fail because there was too much of a focus on minor issues that
really should not have been the focus of the audit at all. The best way to do a
CM assessment is to use an established standard or framework. Understanding
the text of the standard or framework is not always easy.

IT Standards Terminology

Some of the language in existing industry standards and frameworks is
hard to understand, and I believe that improving this situation should be
a priority for industry standards boards and the organizations that have
established frameworks for supporting IT controls. I include myself in

ptg

Chapter 13 Establishing IT Controls and Compliance184

13.7.1 Assessment First Steps

Getting started should always involve gaining senior management’s support for
the assessment, along with identification of the goals of the assessment and who
will participate. Transparency is essential; otherwise, the team will likely be less
cooperative because they will wonder about the purpose and agenda of the as-
sessment. They might even be defensive and fearful that the assessment could
potentially harm them personally. In truth, even the worst groups that I have
seen usually had at least one excellent best practice that I had never seen before.
For this and other reasons, I have learned to listen first when starting an assess-
ment.

13.7.2 Listen First Regardless of How Bad the Situation Appears

When you start a CM assessment, always ask for a description of the best prac-
tices in place already. This not only shows the proper respect for the team, but
it also always results in ascertaining the best practices that should likely not be

this problem. When writing a standard, we need to be precise because
the document is often used in contractual agreements. The problem is
that sometimes we also make the language diffi cult for technology profes-
sionals to understand and follow. We also have to be aware that changes
must be done gradually because many organizations are already using the
standards and rely on the existing terminology. I have recommended that
standards working groups not only look closely at the language used in
the standards, but also begin to include more examples that can make it
easier to understand exactly how a standard can be implemented. Much
of my own writing has focused on how to understand these tools in de-
velopment organizations. For example, I don’t think that confi guration
status accounting is an intuitive term, and I think that the phrase following
the status of a confi guration item throughout its lifecycle is also less than
perfectly clear. I have also argued that confi guration change control does
not mean the same thing that it did 20 years when we did pick specifi c
versions of Cobol programs for a specific release. It would be much easier
for technology professionals to adopt and implement industry standards
if the language were written in a more clear and descriptive way. That is
precisely why I defi ned confi guration management in six functions that I
believe more closely refl ect how CM is really practiced and that I believe
make it easier for technology professionals to get started with implement-
ing CM best practices.

ptg

185

Conclusion

impacted because they already work well for the team. I have also consistently
found that when I ask for a description of existing best practices that work well,
members of the team willingly give me plenty of information about areas that
they know need to be improved. My approach seems to put people at ease and
is a good example of “driving out fear” as recommended by Deming. Some as-
sessments are very formal and often required as part of a contractual obligation.

SCAMPI and CMMI Configuration Management Practice Area

I have worked in organizations that used the Standard CMMI Appraisal
Method for Process Improvement (SCAMPI) to assess existing configu-
ration management practices and identify areas where improvement is
needed. This is a formal approach to assessment and is generally used
when the organizational has a commitment to use the CMMI for all of its
lifecycle processes. The CMMI has been criticized as not providing enough
constructive guidance on how to establish best practices where they do
not yet exist. For this, I recommend using the extensive collection of IEEE
standards, which provide an abundance of well-established industry guide-
lines on all aspects of software and systems development. Nonetheless,
organizations worldwide delight is announcing that they have achieved
recognition for being a Level 3, 4, or 5 organization under the CMMI
framework. Whether you use a formal appraisal method or a more loose
approach to looking at existing best practices and areas for improvement,
CM assessments can significantly improve your organization’s quality and
productivity by providing a view into opportunities where the technology
can improve on their existing confi guration management best practices.
Whether this is done in baby steps or as part of a well-sponsored organi-
zational change effort, CM assessments can help your organization imple-
ment excellent IT controls and meet your compliance requirements.

Conclusion

 In this chapter, we discussed a number of high-profile incidents where configu-
ration management controls were found to be inadequate. We also discussed,
in operational terms, how compliance controls can impact an organization on
a day-to-day basis. The use of CM assessments to self-monitor and prepare for
an external audit was discussed, and some of the common compliance frame-
works were mentioned. It is my personal opinion that CM best practices add
signifi cant value to any organization and that there should be strong reasons for

ptg

Chapter 13 Establishing IT Controls and Compliance186

implementing CM best practices to help the organization truly comply with all
appropriate requirements. I also believe that the approach should be to improve
quality and productivity and not just focus on getting past an audit. The frame-
works themselves should be improved over time so that their recommendations
are valid and their adoption may be accomplished as efficiently as possible.

ptg

Chapter 14

Industry Standards and
Frameworks

Chapter Overview

14.1 Why Are Standards and Frameworks Important? 188

14.2 How Do I Get Started? 189

14.3 Terminology Required 189

14.4 Applying These Terms to the Standards and Frameworks 193

14.5 Industry Standards 193

14.6 Industry Frameworks 196

In this chapter, we start by reviewing the essential terminology required, includ-
ing confi guration item (CI), configuration identification, confi guration control,
interface control, configuration status accounting, confi guration audit, subcon-
tractor/vendor control, and conformance versus noncompliance. We also discuss
applying these terms to the standards and frameworks. Next, we discuss specific
standards, including the following: IEEE 828—Standard for Software Configu-
ration Management Plans; ISO 10007—Quality Management Systems—Guide-
lines for Confi guration Management; ANSI/ITAA EIA-649-A—National Con-
sensus Standard for Configuration Management; and comprehensive lifecycle
standards ISO/IEC/IEEE 12207 and 15288. Next, we discuss industry frame-
works, such as ISACA Cobit, including my own journey with Cobit, with a focus
on control practices. Then, we discuss implementing a comprehensive configu-
ration and change control function and how continuous process improvement
addresses common challenges and problems such as releases that fail. Next, I

187

ptg

Chapter 14 Industry Standards and Frameworks111888888

relate my own experience with the CMM/CMMI and ITIL frameworks, includ-
ing change management, service asset and confi guration management (SACM),
and establishing a configuration management system (CMS), definitive media
library (DML), configuration management database (CMDB), and integrating
the CMS, DML, CMDB, and source code management systems. We also discuss
best practices for implementing release management and deployment and home-
spun environment monitoring. Then, we close the chapter by briefly touching
on SWEBOK, Open Unifi ed Process (OpenUP), Agile/SCRUM, and continuous
integration (CI).

Goals of Using Industry Standards and Frameworks

The primary goal of industry standards and frameworks is to promote a consist-
ent set of widely accepted best practices that consists of the combined knowl-
edge and wisdom of industry experts. These practices help you get the job done
right and improve the quality and productivity of your own processes. Another
goal of using industry standards and frameworks is to implement continuous
process improvement, resulting in overall excellence. This is accomplished by
the fact that it is relatively easy for any technology professional to participate
and contribute to many standards and frameworks. For confi guration manage-
ment, these best practices represent the essential things that you need to do to
have your processes be effective and efficient. As with any specialized discipline,
some terminology needs to be understood to work effectively with standards
and frameworks. We will start by discussing why standards and frameworks are
important along with how to get started. Then we will dive into some important
terminology.

14.1 Why Are Standards and Frameworks Important?

Standards and frameworks are wisdom developed by experts. Standards and
frameworks will help you get started faster and do a better job. For many, they
are also a requirement for compliance, and they certainly make passing your
next audit much easier. Standards and frameworks are essentially best practices
that have been vetted and tested by many of your colleagues who volunteer con-
siderable time to share their knowledge and experience. Please contact me if you
would like to get personally involved with this effort.

ptg

14.3 Terminology Required 189

14.2 How Do I Get Started?

If you have a requirement to establish IT controls and compliance, your audit/
compliance department may tell you exactly where you need to start. If you are
just using standards and frameworks as best practices, start by considering your
own goals and priorities. I have often suggested that taking a risk-based ap-
proach is pragmatic, which means that you consider what your own risks might
be and then focus on addressing those requirements. Make sure that you start
this journey with a focus on improving quality and productivity!

14.3 Terminology Required

The terminology used by CM experts can seem rather arcane. You will also fi nd
that some of the terminology is used differently in common standards (such as
ISO 10007, IEEE 828) and frameworks (such as Cobit, CMMI, ITIL). I recom-
mend using the IEEE’s SEVOCAB: Software and Systems Engineering Vocabu-
lary, which, at the time of this writing, can be found at www.computer.org/
sevocab. In this section, I discuss the most important technical terms that you
need to know to read through the standards and frameworks. Terms such as
confi guration status accounting and confi guration audits are often misunder-
stood, and I have seen them used incorrectly in CM plans used by large corpora-
tions. Confi guration change control is another term that is often misunderstood
and can actually have two different meanings! CM is certainly not the only
discipline with specialized terminology, but I believe we can improve the situa-
tion by updating our terminology to be more consistent with other technology
disciplines. This is easier said than done because there can also be diffi culty in
reaching consensus on what a particular term means. For example, confi gura-
tion items may be defined at a very high level (for example, components) or a
very granular level (for example, configuration files). What exactly is included
in a confi guration item?

14.3.1 Confi guration Item

The fi rst term that you need to understand is confi guration item (CI). Unfor-
tunately, this term is not always used in a consistent way. The question is this:
What exactly constitutes a CI? Configuration items certainly include all compo-
nents that are created during the build and packaging process. But, I would also
consider configuration files, Word documents, and XML to be configuration
items, too. Obviously, all hardware components are also configuration items. It
starts to become diffi cult to determine exactly what is not a configuration item.
Should a header file that is compiled into one or more components be considered

www.computer.org/sevocab
www.computer.org/sevocab

ptg

Chapter 14 Industry Standards and Frameworks190

a confi guration item? I think so and, in fact, I cast a very wide net and consider
almost anything required in a release a confi guration item. In practice, CIs are
selected, identified, and then tracked very closely. We discuss this further in the
following section.

14.3.2 Confi guration Identifi cation

Confi guration identification involves implementing a reliable way to select and
identify the correct configuration items. Usually, this means that you are embed-
ding an immutable version ID into a configuration item, such as a component,
confi guration file, Word document, or XML, along with providing a procedure
to reliably retrieve this version ID. Confi guration identification also involves
creating a unique and reliable naming convention for baselines, packages and
components, and so on. In practice, you are doing this in the version control or
source code management tool. Configuration identification enables you to iden-
tify the exact version of a confi guration item, regardless of whether it is in the
source code management system. Many CM experts spend much of their time
selecting, implementing, and supporting toolsets that facilitate effective configu-
ration identifi cation, including providing traceability to track requirements to
changes. This is discussed further in Section 14.3.5, “Confi guration Status Ac-
counting.”

14.3.3 Confi guration Control

Confi guration control is used to control all changes to configuration items, in-
cluding exactly what the change was, who made the change, and authorization
for the change. Confi guration control also includes the capability to revert the
change back, if necessary. Configuration control also involves controls to make
certain that unauthorized changes do not occur. Confi guration control has also
been used to control the exact version of confi guration items that will be part
of a particular baseline of the code. In a priori change control, permission is
requested to make a change before the change actually occurs. Many develop-
ment teams do not really control changes up front. The project manager, tech
lead, or even the developers implicitly decide which changes should be made and
when they should occur. Many development teams practice change control very
loosely in the beginning of a project and then more strictly when the application
has been released and is being maintained.

14.3.4 Interface Control

Components often have interface dependencies that might be as simple as
pointing to the correct database (such as QA, production) or they may be very

ptg

14.3 Terminology Required 191

complex. I have worked with applications that had interface requirements that
included complex structures to support object persistence or behavior across
complex firewalls and proxies. Many organizations will handle interface control
as part of a configuration control function that will span all the groups impact-
ed. For example, interface control may require that the security team authorize
ports to be opened on a fi rewall while the systems administrators confi gure the
systems to communicate on a specific port. In practice, configuration control
and interface control must be managed very tightly together.

14.3.5 Confi guration Status Accounting

Confi guration status accounting (CSA) involves tracing a configuration item
through its complete lifecycle. This can include tracking a requirement from the
beginning of the application development effort through its development and
eventual deployment as part of a release. CSA also involves providing status of
the CIs at any point of time. It’s been my experience that configuration status
accounting is often misunderstood and frequently overlooked during the devel-
opment effort. In practice, status accounting is often achieved through toolsets
that associate work item (such as defects, tasks, change requests) tracking with
the changesets stored in the source code management system.

14.3.6 Confi guration Audit

Performing a confi guration audit involves being able to verify both the physical
and functional characteristics of any confi guration item (CI). A common mis-
take is that developers believe that it is sufficient to track CIs while they are in a
source code management system. The CI should still be identifi able even when
the code is released to production (or QA). Many organizations rely on their own
internal record keeping to trace when a baseline was promoted to production.
They then mistakenly assume that they know exactly what version is running in
production. I have seen code, even in highly secure production environments,
accidentally modified (sometimes with disastrous results). When confi guration
items have embedded immutable version IDs, a configuration audit can be done
is a reliable and efficient way. I usually write a small script to display the ver-
sion ID of each CI and ship a copy of the list of CIs (and their respective version
IDs). I call this list my release map. A configuration audit can then be done by
regenerating the release map and comparing it to the copy shipped when the
release was fi rst deployed. There are more sophisticated ways of handling this
issue involving cryptographic keys, which we discussed in Chapter 5, “Release
Management.”

ptg

Chapter 14 Industry Standards and Frameworks192

14.3.7 Subcontractor/Vendor Control

It is common for a subcontractor to do work that needs to be under software
confi guration management, including version and change control. It is also in-
creasingly common for subcontractors, including offshore resources, to be treat-
ed just like any other member of the team. This has become more practical as
many robust source code management systems can be used for teams that are
distributed across multiple locations. This might mean that there are a few extra
security controls required because the onshore resource should review and ac-
cept work as it is being completed. In addition, subcontractors are sometimes
producing complete products at another location, and only the completed base-
lined release needs to be version controlled. Many government agencies and
defense contractors have a requirement to confirm that a subcontractor has ap-
propriate IT controls in place, including configuration and release management.
Sometimes, you will also need to manage customizations to the subcontractor’s
release. At a minimum, you need to be able to perform a configuration audit on
the baselined release as it is delivered.

I have also seen open source projects handled as a vendor/third party release,
too. In this case, the development team takes responsibility for a particular re-
lease of the product and handles it much like a third-party product. There are
also times when one developer will provide code to another team, even within
the same company, and handle the release as a third-party product. In practice,
a common key issue is confirming that all copyright requirements have been
met. In some cases, embedding an open source product into a commercial one
may incur unforeseen or unintended obligations on the development team. Hav-
ing the code secured in a source code repository makes it make easier to handle
these issues. It also makes it much easier to affi rm that your team is in compli-
ance with the specific criteria established in the standard.

14.3.8 Conformance Versus Noncompliance

Some standards define specifi c criteria for claiming compliance with the stand-
ard. The implication is that if you follow the guidelines as specified, you have the
right to state that your CM plans comply with the specifi c standard. However,
if you do not include all the required practices, you cannot claim that your CM
plans comply with the standard. Practices required for compliance are usually
indicated by the word shall, whereas suggested practices are indicated with the
word should. Some standards are intended to be guidance only and specifically
indicate that they are not intended to be “compliance” standards. Depending
on the industry that you are in, you might be required to show that you are in
compliance with a particular standard. In other cases, you may just benefit from

ptg

14.5 Industry Standards 193

employing best practices and demonstrating during your audit that you have
industry standard IT controls in place.

14.4 Applying These Terms to the Standards and
Frameworks

Each of these terms is commonly cited in a number of different standards and
frameworks. I have explained the basics, but you still need to read the entire
standard to confi rm your understanding of the terminology within the con-
text of the particular standard. What follows is an overview of the CM-related
standards and frameworks that you need to know about to confi rm that your
own best practices follow established industry guidelines. In some cases, I am
permitted to quote only a small section of the standard verbatim, so I have to
recommend that you legally obtain a copy of the actual standard or framework
to get a complete picture and thus successfully implement these best practices.
What follows is an overview that I hope will help get you started.

14.5 Industry Standards

Many excellent standards have been written to support configuration manage-
ment. We discuss some of the most common standards in this section, but you
should remember that standards are best practices that have been written and
reviewed by a team of industry experts. I am going to play fast and loose by
saying that standards are wisdom, and from time to time you may decide not
to follow them or to tailor them to your own needs. But, I want to make sure
that we start the discussion by noting that a lot of work goes into creating an
industry standard and for the most part you would do well to follow them and
benefi t from you colleagues who took the time to create them. Incidentally, I
also want to mention that many standards working groups consist of volunteers
who receive no monetary benefit from their involvement and their sharing of
substantial knowledge and experience. We all owe them a debt of gratitude for
their corporate citizenship, and I hope that you will contact me to get involved
with these efforts.

14.5.1 IEEE 828—Standard for Software Configuration
Management Plans

The IEEE 828 CM planning standard is one of the most widely used guidelines
for effective software configuration management. IEEE rules prohibit me from

ptg

Chapter 14 Industry Standards and Frameworks194

including more than 10% of the standard in this book, so I will give you an idea
of how the standard can help you while encouraging you to go out and purchase
your own copy from the IEEE. Here are the main sections of the Software Con-
fi guration Management Plan:

● The Introduction describes the plan’s purpose, scope of application, key
terms, and references.

● SCM Management identifies the responsibilities and authorities for ac-
complishing the planned activities.

● SCM Activities identifies all activities to be performed in applying to the
project.

● SCM Schedules identifies the required coordination of SCM activities with
the other activities in the project.

● SCM Resources identifies tools and physical and human resources required
for execution of the plan.

●

SCM Plan Maintenance identifies how the plan will be kept current while
in effect.

The activities include configuration identification, configuration control, con-
figuration status accounting, configuration audits and reviews, interface control,
and subcontractor/vendor control. Release management and delivery describes
how the build, release, and delivery of the software products and documentation
will be formally controlled. 1

14.5.1.1 Conformance with the Standard
I have worked in many and varied organizations, including private companies,
government agencies, and defense contractors that had a contractual obliga-
tion to comply with the requirements specified in the IEEE 828 standard. CM
plans that conform to the standard bear the coveted phrase, “This SCM plan
conforms with the requirements of IEEE Std 828,” which means that the plan
includes the introduction, management, activities, schedules, resources, and
plan maintenance as described above. In addition, all activities must have an
assigned resource to perform the activities specified in the plan. It is also a re-
quirement to have defi ned processes for creating baselines and change control
for all configuration items (CI). As you read through the standard, you will also

1 Note that in IEEE 828-2005, the SCM activities were grouped into five functions: con-
fi guration identification, configuration control, confi guration status accounting, confi gu-
ration evaluations and reviews, and release management and delivery.

ptg

14.5 Industry Standards 195

notice that some activities are described with the word shall or required. This
refers to activities that are minimally required for conformance to the standard.
Other activities are described using the work should, which means that they are
optional, although still best practices that you should employ to improve your
quality and productivity. The IEEE 828 Standard for Software Configuration
Management Plans is the most commonly used CM-related standard and is re-
garded as a “national consensus standard,” but other standards and guidance
documents are also widely used.

14.5.2 ISO 10007—Quality Management Systems—Guidelines
for Configuration Management

ISO 10007 is part of the ISO 9001 family of standards, designed to support a
quality management system (QMS). It provides guidance on the use of configu-
ration management by outlining the configuration management process, includ-
ing configuration management planning, configuration identification, change
control, confi guration status accounting, and configuration audit.

14.5.2.1 ISO 10007 Is a Guidance Document
ISO 10007 is a guidance document and is not intended to be used for certifica-
tion purposes.

14.5.2.2 Understanding ISO 10007
To understand ISO 10007, you need to know that the ISO 9001 family of stand-
ards are intended to support a quality management system in both software and
nonsoftware environments. Closely related is the ISO 9000 family of standards,
which are intended to support quality management and quality assurance. It’s
helpful to note that these early standards were focused on establishing quality
management but were not specifi cally geared toward software environments.
ISO 9000-3 was the application of ISO 9001 to the specifi cation, development,
installation, and support of software. Under ISO 9000-3, configuration man-
agement included version control and identifi cation of baselines, change con-
trol, and status reporting, along with well-defi ned roles and responsibilities.
ISO 10007 and ISO 9000-3 are primarily high-level guidance documents and
are often supplemented by other, more detailed, standards. Nonetheless, most
standards groups will strive to be in alignment with the ISO 9000/9001 family
of standards, including ISO 10007.

ptg

Chapter 14 Industry Standards and Frameworks196

14.5.3 ANSI/ITAA EIA-649-A—National Consensus Standard
for Confi guration Management

This standard describes configuration management functions and also defines
CM terminology. This standard focuses on establishing and maintaining consist-
ency between the resulting product and the product requirements and attributes
defi ned in product confi guration information. The standard recommends proc-
esses and tools to perform the configuration management functions.

The plan includes schedules, resources, training required, and cost information
that are all placed under configuration control. This standard is not as widely used
as the IEEE 828 and describes itself as being a “noncompliance” standard.

14.5.4 ISO/IEC/IEEE 12207 and 15288

The ISO/IEC/IEEE 12207 standard describes the software engineering processes used
throughout the entire lifecycle of any software system (with 43 processes), where-
as ISO/IEC/IEEE 15288 covers the processes used during the entire lifecycle of any
human-made system (with 25 processes). I like to call these standards an umbrella
standard because they provide a comprehensive framework for the entire develop-
ment effort. In practice, they contain brief treatment of any part of the development
lifecycle. They are easily extended by plugging in any of the IEEE-specific standards
such as testing, quality assurance, code reviews, or configuration management plan-
ning. These two standards provide an excellent starting point and are always harmo-
nized with the other deeper function-specific standards mentioned earlier.

14.6 Industry Frameworks

Frameworks are written and supported by the industry group responsible for
them. Frameworks do not generally require the stringent 75% vote that is more
commonly required by standards boards. Standards are more commonly quoted
in contractual agreements, although I have seen plenty of organizations that had
contractual agreements to implement frameworks such as Cobit, ITIL, or the
CMMI. It is my opinion that it is easier to get personally involved with stand-
ards boards, 2 although frameworks committees have the advantage of operat-
ing with more autonomy (which may sometimes result in better results because
they do not have to worry about the voting process). This is my personal view
and may be somewhat controversial. But, I have seen standards get mired in the
consensus building process to get the required quorum (and get approved). In
practice, frameworks typically quote standards, and my colleagues and I work

2 Contact me personally if you would like to get involved with the IEEE standards work!

ptg

14.6 Industry Frameworks 197

14.6.1 ISACA Cobit

Cobit is one of my favorite frameworks and is generally considered to be syn-
onymous with compliance with section 404 of the Sarbanes-Oxley Act of 2002.
There are 34 high-level IT processes described in the Cobit model, which com-
bined provide comprehensive guidance in establishing IT controls, including
those that support configuration management. To implement Cobit, you need
to have studied the model and understand the IT controls that it prescribes.
But even then, it is not easy to implement IT processes by just reading the Co-
bit framework. In fact, I have had many discussions with technology profes-
sionals who were responsible for IT compliance and audit professionals who
were concerned about correctly interpreting the guidance specified in the Cobit
framework. Some others just went through the motions to appear as if they had
implemented the Cobit controls, saying that it was just too diffi cult and expen-
sive to really implement the Cobit controls—even if they were understandable.
So, then, if it’s this difficult, what is wrong with Cobit?

14.6.1.1 The Problem with Cobit
Many people complain that Cobit, among other frameworks and standards, is
just too complex and diffi cult (read expensive) to implement. I do not believe
that this criticism is valid. Instead, I suggest that many people tend to ap-
proach Cobit the wrong way. Too often, technology professionals are forced
to narrowly focus on passing an audit, versus improving processes along with
quality and productivity. My view is that implementing Cobit should be a
journey in improving your IT processes, including establishing effective IT
controls. It is essential that you start with defi ning your goals in practical
terms. Cobit is just a tool to help you get this job done, and if used well, it
will save you lots of time and effort. Cobit provides you with plenty of guid-
ance on how to defi ne these goals and implement the controls themselves in
practical terms. In short, there is nothing wrong with Cobit. It is a framework
with expert guidance just like any other standard or framework. Written and
developed by industry experts, although it may not be perfect, it is nonetheless
a valuable tool when used to guide the implementation of IT processes in an
effective and appropriate way.

14.6.1.2 My Own Journey with Cobit
In this section, I describe my own personal efforts to understand Cobit and how
it can best be implemented in practical terms. It is true that I have had the dis-
tinct advantage of recognizing that Cobit is just guidance. Years ago, we worked

hard to help keep CM-related standards in harmony with frameworks. Wisdom
should be shared, so let’s explore the frameworks related to CM!

ptg

Chapter 14 Industry Standards and Frameworks198

on improving our processes without any available frameworks, and back then
we just wished that we had a database of project-related metrics to guide us
on our journey. Back in the 1980s, we used the tools of collaborative process
consultation with the subject matter experts available to us. Now, with a com-
prehensive framework, we can accomplish a lot more and achieve our goals with
considerably less effort. So my approach is to use Cobit as a tool, in conjunction
with other frameworks and industry standards. To say this differently, I would
never suggest that you just jump into the complexities of the framework without
a specifi c goal-driven approach. I have also found that some sections of Cobit
are just easier to grasp than others. Many people have complained to me that
their fi rst attempt at understanding Cobit was less than successful and that they
found it almost impossible to implement the processes just based on the guid-
ance described in the framework.

14.6.1.2.1 Control Practices Give Clarity
I have personally found that the key to success with Cobit is to analyze the de-
tailed control practices described in the online model. I encourage you to get the
original copy from ISACA directly, but I will describe what I have learned dur-
ing my own journey and my own method for analyzing the guidance described.
To start with an example, we’ll look at change control, which is one of the most
important IT processes described in the Cobit framework. The Cobit framework
provides considerable guidance on change management. (Later in this book, we
discuss the itSMF’s ITIL change management function.) Let’s start with analyz-
ing this specific process, and then we’ll look at scaling configuration and change
control in a wider context.

14.6.1.2.2 Manage Changes
In this critical IT process area, changes are reviewed, approved (or rejected),
controlled, and tracked. There is a heavy focus on requiring that all changes be
reviewed and only permitted on being authorized by the Change Control Board
(CCB). I have found that some individuals will work hard to bypass the change
control process if they believe that it is too burdensome to follow. When an
emergency occurs, these folks can usually gain enough political power to get
authority to just make their changes without having to worry about the change
control process. The problem here is twofold. Not only could that change result
in a serious mistake, but even worse, others will stop taking change control seri-
ously when these exceptions occur. As a result, an emergency change becomes
a way to bypass the standard change control process. In some organizations, it
almost becomes a badge of honor that you don’t have to waste time following
a burdensome change control process. The answer to this problem is to have
a well-defi ned and manageable emergency change control process in place to

ptg

14.6 Industry Frameworks 199

handle legitimate emergency changes but to be extremely selective as to what
constitutes a true emergency change.

14.6.1.2.3 What Makes Something an Emergency?
Sometimes, completely unforeseen incidents occur and impact critical IT infra-
structure. In these situations, you need to have an emergency change control
function in place to address the issue. I have also seen situations where someone
made an emergency change that did go through change control and inadvert-
ently made the problem even worse. Emergency changes could include patches
for both infrastructure and all applications. The emergency change control proc-
ess should require getting permission from a senior manager who demonstrates
support for the change management process by ascertaining why the change
cannot go through the normal channels. In practice, most professionals will use
the emergency change control sparingly only if they have to explain themselves
before a senior manager who has authority over the change control process
(with the ability to approve or deny the change).

In addition, all changes should be logged and reviewed before and after the
change is made. I have been in many change control meetings where we reviewed
changes—approving or rejecting them (usually because of missing information)
and also reviewed changes that had been completed already to ascertain whether
there were any problems that could have been prevented. For example, if a
change was approved, but resulted in an unexpected side affect or downstream
impact, this dependency needs to be identified and documented to prevent a
similar problem from occurring in the future. From these lessons learned, we
could effectively improve our change control process.

14.6.1.2.4 Metrics Provide Visibility
The Cobit framework also provides guidance on the effective use of metrics
to measure success. For example, tracking the number of problems and errors
caused by “inaccurate specifications” or “incomplete impact assessment” (of the
change) gives us valuable data to ascertain the root cause of the problems. These
metrics help us to manage change better because it is common to get surprised
by unexpected impacts that might directly result from a given change. Other
recommended metrics include the amount of “application or infrastructure re-
work” caused by inadequate change specifi cations and the percent of changes
that follow formal change control processes. The number of emergency changes
and the reason for them bypassing the regular change control process are also
important metrics to track. These metrics help us to recognize problems (and
risks) and to try to avoid making the same mistake over again. Recognizing the
practical value of the metrics gathered can help us become much more adept at
managing change in the IT process.

ptg

Chapter 14 Industry Standards and Frameworks200

14.6.1.2.5 Scaling Cobit to Improve Your IT Processes
In the previous section, I briefl y described analyzing one of the 34 IT processes
described in Cobit. In practice, you want to analyze a number of Cobit proc-
esses along with IEEE standards and other frameworks such as ITIL and the
CMMI to design effective and comprehensive IT processes. I will now explain
the way that I approach synthesizing three Cobit processes with support from
other standards and frameworks to implement a comprehensive configuration
and change control function. Note that while I am using Cobit for guidance, I
am also tailoring the guidance to a typical company that I have imagined based
on my own experiences.

14.6.1.3 Implementing a Comprehensive Configuration and Change
Control Function
In practice, implementing configuration and change control involves a number
of important processes. To accomplish this integration, I analyze the guidance
in three Cobit processes:

1. Manage changes.

2. Manage the configuration.

3. Install and accredit solutions and changes.

14.6.1.3.1 Start with the Goals in Mind
Cobit lists many important goals that should be considered when designing any
confi guration and change control function. I usually recommend starting with
your own list fi rst. Here’s my first cut:

1. Identify and plan for changes that are needed to support the business.

2. Assess and mitigate risk associated with the proposed changes.

3. Implement changes accurately and efficiently.

4. Provide traceability into changes, including who authorized them.

5. Test and verify that changes were implemented successfully.

6. Provide reliable procedures to back out changes if necessary.

7. Continuously improve our configuration and change control procedures.

After I create my own list, I review the goals listed in Cobit, along with other
frameworks, and update my list with any goals that may help me get the job

ptg

14.6 Industry Frameworks 201

done better. Obviously, you also need to set priorities because, although certain
functions might be nice to have, you should fi rst address the most immediate
needs.

14.6.1.3.2 Consider Metrics to Measure Success
Here are some metrics that may indicate poor to nonexistent confi guration and
change control procedures:

1. Number of mistakes or errors resulting from a change or configuration is-
sue that resulted in an unexpected problem or higher risk to the business

2. Number of valid issues identified during an audit or compliance review

3. Number of requests for change that needed to be rejected because of inac-
curate or incomplete specifications

4. Missing or unknown information about configuration items, including
confi guration issues such as patch or driver versions

5. Amount of downtown or service interruption caused by inaccurate change
specifi cations or missed impact assessment

6. Number of emergency change requests or attempts to bypass the standard
change management process

7. Amount of time in staff hours required to implement and support a change

Here are some metrics that should indicate that you have an excellent con-
fi guration and change control function:

1. Customer satisfaction as measured by survey and anecdotal information

2. Number of requests for change that were completed on time without un-
expected incidents or problems

3. Changes that are handled by a third party without requiring developer
intervention

4. Number of changes completed within a specified window

5. Number of changes that have well defi ned and repeatable change control
processes (including automation)

6. Number of changes that can be easily backed out if necessary

7. Number of changes completed that included specifi c tests to validate and
verify system functionality after changes have been completed

ptg

Chapter 14 Industry Standards and Frameworks202

14.6.1.3.3 The Soft Indicators
I have personally found two other soft indicators are a clear indication of ef-
fi cient and effective change management. The first is the ability to make many
small changes flawlessly without significant risk, as opposed to saving all the
changes up for a “big bang” window when you need developers on call to deal
with mistakes and problems. The other soft indicator is the ability and confi -
dence to make a change within a short window, as opposed to requiring a long
window with a large number of staff on call to resolve problems. This may upset
a few people, but I have seen organizations that had so many problems that they
simply gave up on effective release management and required that all changes
be made on Friday nights with the entire staff on call for the weekend. The or-
ganization just assumed that promoting a release would always be problematic
and just required that everyone share the pain. In some other industries and
work cultures, subpar performance is just accepted as the norm. For example,
in some places, it is just assumed that trains and buses will not be able to stick
to a schedule.

Buses and Trains Should Run on Time

W. Edwards Deming pointed out that transit systems should always run
precisely on time. I have read descriptions of transit systems that ran pre-
cisely on time and others that were constantly unreliable. Deming’s point
was that there is no possible excuse for accepting poor quality as a norm.
Similarly, release management should be automated, reliable, traceable,
and verifi able. Sadly, many organizations just assume that release man-
agement cannot be controlled, just as trains and buses will be habitually
late. For example, many organizations require that changes be made on a
Friday night, allowing for lots of time to fi x and deal with problems that
should not occur in the fi rst place. Some of these organizations are just
being prudent, but I believe that many organizations are really admitting
defeat and assuming that every release will be a problem that takes many
hours to fi x. These same organizations often do not have confi dence that
they can easily roll back a release after it has been deployed. Your release
management process should be reliable, predictable, controlled, and trace-
able. In the next section, we take a closer look at the tasks and functions
that need to be part of a robust confi guration and change management
function using the guidance described in Cobit. Intuitively, I look at this
effort as starting with a set of primary configuration and change manage-
ment functions, with a set of supporting functions essential for success.
I also readily synthesize in concepts, functions and processes from other
standards (e.g., IEEE, ISO) and frameworks (e.g., Cobit, CMMI).

ptg

14.6 Industry Frameworks 203

14.6.1.3.4 Putting Together a Configuration and Change Management Framework
Organizations need to start by realizing that this effort involves creating and
implementing a comprehensive change management framework, including well-
defi ned processes and procedures to support the change request lifecycle. Much
of what we are about to describe should be part of your change management
framework. You will certainly want a clear and consistent way to submit change
requests (CRs), which are then reviewed by the change control board (CCB) to
assess impact and priority. This review process should be based on assessing and
mitigating risk. Therefore, you should focus on those specifi c issues that might
adversely impact your organization. It is essential to realize that emergencies do
occur, and there needs to be a well-defi ned and repeatable emergency change
control process. I recommend requiring that a very senior manager approve all
emergency change requests so that you can confirm that people are not using the
emergency change control process to simply bypass the standard change control
process. An essential part of this review should include automated procedures
to promote releases (and fallback to a previous release if necessary). The CCB
should insist that deployment be automated, especially if there have been mis-
takes made in previous releases. Deployment also needs to be fully traceable so
that you know exactly what is deployed at any particular point in time. After the
review of the CRs has been completed, authority should be granted to promote
the release. Changes to confi gurations are sometimes viewed as being “minor”
changes but should be handled in essentially the same way because they are ef-
fectively the same as a release.

14.6.1.3.5 Do Confi guration Changes Need to Be Handled by the Change
Control Process?
People often ask whether configuration changes need to be handled in the same
manner as releases. For the most part, the answer is yes, especially if the change
has the potential to shut down the production system. Even seemingly “minor”
confi guration changes can have devastating impacts. Therefore, all configura-
tion changes ideally should be handled by change control. Your change control
processes will need to assess whether there are indeed “minor” changes that do
not incur signifi cant risk.

14.6.1.4 Continuous Process Improvement
Any configuration and change control process needs to build in a mechanism to
assess itself and continuously improve. In my experience, it is often impossible
to design a comprehensive change control process for a large-scale technology
effort. There are often just too many moving parts, leading to a level of complex-
ity that makes it almost impossible to specify the perfect change control process
from the beginning. Yet, that is often exactly what I am asked to do. There are
also usually good reasons for why the group is making mistakes, but it might

ptg

Chapter 14 Industry Standards and Frameworks204

not be easy to ascertain the root cause of these problems. It is my opinion that
the best way to handle this is to continuously review and improve your processes
with a special focus on implementing changes and improvements to address
challenges and problems that occur in your environment. In the next section, we
discuss the primary configuration and change management functions.

14.6.1.4.1 Primary Confi guration and Change Management Functions
Figure 14.1 shows what should be included in your configuration and change
management function.

Defined processes
and procedures to

support request
for changes (RFC)

Change Management
Framework

Emergency
changes requires

high-level
authorization

Emergency Changes

Review RFCs,
assess impact, and
prioritize changes

Manage Risk

Authorize
or deny?

Authority to
Implement Change

Testing and
configuration

audits

Verification and Validation
Change closure

and post-
implementation

review

Process
Improvement

Automated
procedures to

promote and fallback
(traceability)

Deployment

 Figure 14.1 What you need to include in your change and configuration management
function.

14.6.1.4.2 Essential Support Configuration and Change Management Functions
Many functions described in the Cobit framework are essential for you to in-
clude in your confi guration and change management function. You will recog-
nize them because we have discussed most of them earlier in the book. Con-
fi guration identification must include embedding immutable version IDs in all
confi guration items so that you can successfully audit releases of the code in
production in addition to having an effi cient version control mechanism to
manage your source code. Good source code and release management practices

ptg

14.6 Industry Frameworks 205

include the creation of baselines to know the exact versions of all source code
and other configuration items that were included in a particular release. This
practice is known as baselining your code and should result in well-packaged
releases stored in a central release library. (In ITIL, we call this the defi nitive
media library or DML.)

14.6.1.4.3 The Challenge of Asset Management
Tracking baselines and confi guration items as software assets is an essential
practice that can be complex to implement in large-scale environments. The
confi guration and change management function should include procedures to
identify all software (and hardware) assets and any changes that are required
(and, of course, vetted in the change control process).

Managing environments and environment dependencies (both compile and
runtime) is an often overlooked function that is critical for your success. Train-
ing is also often overlooked and needs to be a key function that includes iden-
tifying changes required by the new release of the software. Verifi cation and
validation should be part of any process, too. As mentioned before, verifi cation
means that your processes have the intended results. Validation means that your
processes yield the correct results! In the next section, we discuss how to plan
and implement the processes described by the Cobit model.

14.6.1.4.4 Essential Change and Configuration Management Supporting Functions
Figure 14.2 shows the supporting functions that you need to implement to sup-
port your core functions (the core functions were shown previously in Figure
14.1).

14.6.1.4.5 Planning for Implementation
Planning for the implementation of Cobit can be very challenging. I have seen
organizations attempt to adopt Cobit on a wide-scale basis to support the need
for immediate Sarbanes-Oxley (SOX) compliance. This is tough and often re-
sults in less-than-spectacular success. Remember that you do not want your
organization to just “pretend” to follow Cobit. The adoption of any standard
or framework is an opportunity to assess your current best practices and then
improve your processes by adopting well-defined industry best practices. Your
implementation needs to start by defi ning your own goals and especially the
risks that you need to mitigate. Make sure that you also plan for both support
and training of all involved personnel. In practice, I look for the “low hanging
fruit,” where improvement can be shown easily. Getting some successes will
make it much easier for you to tackle the tougher problems. For example, many
organizations start by implementing a simple change control function to just act
as a gatekeeper for reviewing releases that are going to be promoted to produc-
tion. Usually, you will also review confi guration changes, too. This might be

ptg

Chapter 14 Industry Standards and Frameworks206

14.6.1.4.6 Releases that Fail
People usually call me when the release management process is broken. This
is always a great opportunity to look for ways to improve existing processes.
I often find that many things are being done well, but there is always a reason
why the team is making mistakes. Reviewing the functions described in the Co-
bit model, I might ask to review the testing that will be done when a release is
promoted to production. I also ask to see the detailed release procedures, includ-
ing scripts to automate the deployment. I ask to see the procedures for backing
a release out should that be necessary. Mistakes and releases that fail are often
the perfect opportunity to make things a little better. My advice is to review the
best practices described in the standards and frameworks (including Cobit) and
then pilot improving your processes by implementing a change that addresses
the problem that you need to solve or the goal that you need to achieve. It is
common for mistakes and failures to trigger a request for a complete assessment
of existing practices.

Version IDs
embedded in all

configuration items

Configuration
Identification

Baselines

Library
Source code
management

Version Control

Compile and
runtime

dependencies

Environment
Management

Testing

Verification and Validation
Identification
and control

of assets

Assest
Management

User
training

Training

Figure 14.2 Change and confi guration supporting functions.

enough to get you started with a basic change control function. You then need
to decide which functions to add to improve your processes. I usually look at
mistakes as a great way to evaluate and justify raising the bar.

ptg

14.6 Industry Frameworks 207

14.6.1.4.7 Conclusion
Cobit is one of the best frameworks to use when you want to improve your IT
processes. The best practices regarding configuration and change management
can help you establish your own CM-related practices. Other excellent frame-
works also provide guidance, including the CMMI and ITIL.

14.6.2 CMM/CMMI

The original Capability Maturity Model (CMM) and the newer Capability Ma-
turity Model Integration (CMMI) provide guidance on effective processes, in-
cluding confi guration management. The Software Engineering Institute (SEI) at
Carnegie Mellon states that the CMMI is a process-improvement approach that
can be used to guide process improvement across a project, a division, or an
entire organization. The CMMI helps integrate traditionally separate organiza-
tional functions, set process-improvement goals and priorities, provide guidance
for quality processes, and provide a point of reference for appraising current
processes. The CMMI can be implemented in a fl exible continuous process-
improvement manner or staged in a more formal way, similar to the original
CMM. I have worked in many organizations that embraced process improve-
ment, especially with the CMM/CMMI as a framework.

One of the most frustrating considerations was the traditional view that proc-
ess areas had to be implemented in a specific order. In practice, this meant that
you could not start code reviews before you had implemented subcontractor
management. This was pretty silly because our pain points were just not really
focused on subcontractor maintenance and code reviews gave us immediate re-
turn on our investment. This was a perfect example of where we really needed
to tailor the framework to meet our organizational needs. Today, I often hear
companies refer to implementing CMMI Levels 2/3, which means that they se-
lect only the process areas from Levels 2 and 3 that are most relevant to their
organizations.

The CMMI configuration management process area states that “the pur-
pose of confi guration management is to establish and maintain the integrity of
work products using confi guration identification, configuration control, status
accounting, and confi guration audits.” We have discussed what each of these
terms means earlier in this chapter, but the real work of confi guration man-
agement involves creating a means to identify everything from components to
documentation that goes into creating a release of your code. You also need to
baseline your code (sometimes called establishing a control point) so that you
can get back to the exact versions of your source code and all other configura-
tion items when you need to. You also need to control changes, provide status
on all confi guration items being created, and maintain a confi guration manage-
ment system that includes your source code and accurate records of all changes.

ptg

Chapter 14 Industry Standards and Frameworks208

14.6.2.1 Subcontractor Management
The CMM and the CMMI always placed a strong value on managing contrac-
tors. This is also seen in the Cobit framework and many IEEE standards, too.
For confi guration management, this oversight is particularly important. It is
common for companies to purchase systems that they then modify and extend as
needed. Purchasing a product from a supplier does not mean that you don’t need
to establish confi guration management controls. In fact, many times, we have
asked the supplier to give us visibility into their own configuration management
practices, especially their procedures for identifying configuration items that you
will need to know to conduct a confi guration audit. You also need to establish
change control to handle configuration change issues, including opening firewall
ports in production or managing interface dependencies with other systems.

The Capability Maturity Model has always been an excellent framework to
use in assessing your existing processes and determining what still needs to be
changed and be improved. I have found that most organizations need other help
to establish these practices. One excellent approach is to use the CMMI and re-
lated IEEE standards to provide more information on how to actually establish
the practices that you can then use to evaluate your progress and identify areas
for improvement using assessment tools such as the CMMI Appraisal Method
for Process Improvement (SCAMPI). While the CMM has been used for decades
as a framework for establishing effective IT processes, a more recent model is
the itSMF’s ITIL framework, which focuses heavily on confi guration manage-
ment as it defines best practices for IT service management.

14.6.3 itSMF’s ITIL Framework

The itSMF has developed an exhaustive framework that describes best practices
for IT service management. ITIL has a strong emphasis on confi guration man-
agement best practices and, in my view, is the most comprehensive description
of CM practices that I have ever seen. ITIL can also be somewhat intimidating to
tackle because it requires five rather large texts to present all the essential infor-
mation. The volume that focuses most on CM is called service transition and in-
cludes guidance on change management, release and deployment management,
and service asset and confi guration management (SACM). ITIL has a strong
focus on asset management and treats both hardware and software as assets that
need to be placed under control. Throughout the framework, there is a heavy
focus on planning activities and managing the implementation process. In fact,
the title of the volume refers to transitioning an IT service or other configuration
item from one lifecycle status to the next. I discuss some of the core concepts of
ITIL here, but suggest that you obtain the framework directly from the itSMF
so that you can read all the essential information described in this framework.

ptg

14.6 Industry Frameworks 209

14.6.3.1 Change Management
Change management involves the review, impact assessment, approval, and
possibly rejection of requests for change. ITIL describes change management
in terms of being a repeatable process and a specifi c organizational function.
All changes are managed through the change request, and there is a specific
workfl ow suggested that can be modifi ed to your organizational needs. ITIL
is so detailed that it suggests a specific process flow for actions such as change
request, deployments, and standard operational changes. There is also a list of
items that you should include in your change document. I find this level of detail
in a framework extremely helpful because it gives you a starting point to create
your processes. Some organizations might adopt the entire framework because
of contractual obligations or the desire to show that they are ITIL compliant.
Ideally, your organization can pick which practices make the most sense and
trim down to be as lean as possible.

14.6.3.2 Change Advisory Board
ITIL is the first standard or framework that I have seen that differentiates be-
tween the people who are responsible for the change control process and those
technology experts who actually understand the impact of a particular change.
The change advisory board is a group of subject matter experts (SMEs) who
can provide guidance on what might happen if a particular change is author-
ized. In practice, this is very important, and I have seen many situations where
the change control board was reviewing a request for change and really did not
have anyone present who could fully advise them on what might happen if a
particular change occurred. That might sound incredible, but it is common for
the “process guru” to not have all the technical details (because this information
is often highly specialized, with only a few experts really understanding all the
essential details). The change advisory board helps to identify the technical ex-
perts who need to be consulted without trying to make them attend every CCB
meeting. In practice, this makes a lot of sense and will lead to fewer mistakes
and better control over changes.

14.6.3.3 Service Asset and Configuration Management
ITIL service asset and confi guration management (SACM) provides a compre-
hensive approach to configuration management, including the management of
all confi guration items as “assets.” The first time that I heard about software
being managed as IT assets, I was rather surprised and puzzled. Asset manage-
ment makes sense when it comes to counting desktop computers or printers, but
I had some trouble adjusting to the idea that software applications were also
considered assets. Over time, I realized that this was exactly how we should
regard software applications.

ptg

Chapter 14 Industry Standards and Frameworks210

14.6.3.4 Asset Management
Asset management needs to be handled as part of a complete lifecycle. In many
ways, it includes many of the points that are intended by status accounting as
described in the IEEE standards and the CMMI. Status accounting is intended
to track the status of confi guration items throughout their lifecycle. The ITIL
framework describes the use of a configuration management system (CMS) to
track the status of all related assets.

14.6.3.5 Configuration Management System
The confi guration management system is used to track all assets and their re-
lated changes. In practice, it can be a challenge to keep the CMS up-to-date on
a regular basis. If this requires that a person manually update a database, you
might fi nd that the CMS gets out-of-date pretty quickly. It’s best to automate
your processes as much as possible to update the CMS (or its equivalent) as part
of the release management process.

14.6.3.6 Definitive Media Library
The definitive media library (DML) is the repository for all production releases.
It is essential that the DML be kept secure and accessed only by authorized
release management personnel. In Chapter 1, “Source Code Management,” we
discussed the use of source code management to manage all the source code
that is part of a release. The ITIL framework does not describe the software
development process because it is mostly focused on IT service management.
For my description of ITIL, I need to include source code management because,
in practice, the source code management system needs to be integrated with the
DML. Developers interact daily with the SCM tools while the release manage-
ment team builds and deploys the official baselined release.

14.6.3.7 Release Management and Deployment
The ITIL framework focuses on the planning effort required to accomplish re-
lease management and deployment. There is also a focus on reducing the impact
on services that could be affected by the release. ITIL expects that releases are
appropriately packaged, tracked, installed, tested, and if necessary, backed out
through a well-defined uninstall process.

14.6.3.8 Integrating the CMS, DML, CMDBs, and SCM
Figure 14.3 shows the relationship between the configuration management sys-
tem (CMS), confi guration management databases (CMDBs), definitive media
library (DML), and the source code management system (SCM). Note that the
source code repository is not the same as the configuration management sys-
tem; the latter is usually a database that tracks the status of configuration items
throughout their lifecycle. Baselines are typically kept in the DML, which in

ptg

14.6 Industry Frameworks 211

some cases is a separate instance of the source code management system in-
tended to be used for asset management.

Source Code
Repository

Configuration
Management

System

Parent
(Federated)

CMDB

Specialized
CMDB

Specialized
CMDB

CMDB

Production, Integration,
or QA

Environment

DML

Figure 14.3 The relationship between the CMS, CMDBs, DML, and SCM.

14.6.3.9 Configuration Management Database
There are many different types of configuration management databases. CM-
DBs may be dedicated devices that monitor the environment or fully functional
databases that receive input from a variety of sources (such as other CMDBs).
In the latter case, we usually refer to the CMDB as being federated, because
typically one or more specialized CMDBs feed their information to a parent
CMDB that consolidates the information and provides an information console.
Some types of CMDBs have been around for a long time. Nevertheless, some of
my colleagues have criticized the ITIL concept of a CMDB as being impractical
and not fully realized. In my opinion, the folks who criticize ITIL are missing
the essential point that while ITIL provides valuable guidance, process improve-
ment has to be driven from within the organization. A framework or standard
is really just guidance. Obviously, your business may contractually require that
you comply with a standard or framework, but process improvement has to

ptg

Chapter 14 Industry Standards and Frameworks212

start with defining the goals that matter most to you and your organization. Too
many people focus on the perception that many CMDBs fall short of their ex-
pectations, instead of realizing the value that they provide and working toward
making the best better. Here’s how to approach implementing a CMDB as part
of your process-improvement effort.

14.6.3.10 Process Improvement for CMDBs
In my experience, it is always best to defi ne the goals of a process-improvement
effort in very narrow terms. Trying to “boil the ocean” often falls short of ex-
pectations, which can adversely impact your process-improvement efforts. The
key is to determine priorities by considering risks and goals. For example, a
fi rewall provides an essential service to the organization in terms of preventing
unauthorized access and the potential loss involved with such incidents. One of
the most common CMDBs in place today is a dedicated device that monitors
fi rewall access and reports on unauthorized attempted access. This information
is often reported up to a console that is surveilled by data security personnel.
Most organizations watch the fi rewall access closely in their production envi-
ronments, although many also have an integration environment (possibly ac-
cessed by customers involved with beta testing) and QA environments, which,
in my opinion, should be treated like a production environment.

14.6.3.11 Homespun Environment Monitoring
I have worked in organizations where the source code management repository
was a full-featured production database. The organization’s most valued assets
were in the SCM repository, and losing that code would have been nothing
short of a major disaster. To protect our code, we regularly ran integrity checks
on the SCM repository. In one case, a misconfi gured storage device resulted in
the source code repository becoming corrupted. Fortunately, we did not lose a
line of code because we had scripts in place that checked the integrity of the re-
pository on a nightly basis. It took the two vendors involved months to find the
problem and fix it, which turned out to be a rather trivial confi guration error. In
the meantime, none of our code was lost because we were able to immediately
spot the problem and take measures to address the issue. Without this surveil-
lance in place, we could have potentially lost years of work and put the fi rm’s
source code assets at risk.

14.6.3.12 Putting Together Your CMDB
I recommend that you consider your own risks and goals when you decide how
to implement your CMDB. What assets do you need monitored? What events
are essential to review and deal with immediately? Perhaps you need to monitor
your environment for disk space and available resources, including connections
to essential resources. Individual processes need to be monitored to see that

ptg

14.6 Industry Frameworks 213

they stay online and available. Some of your CMDBs may be dedicated devices
with a narrow focus, and others may have a wider focus (often receiving input
from the specialized devices). Make sure that when a mistake or problem occurs
you consider whether adding another CMDB (or improved functionality to an
existing CMDB) will help avoid the problem in the future. In pragmatic terms,
you might not be able to prevent every incident from occurring, but you should
address situations where the same problem occurs over and over again. CMDBs
provide an excellent, cost-effective way to handle the surveillance of your en-
vironment. Closely related is the topic of automated testing. In fact, it is pretty
common to use testing as part of your approach to monitoring and controlling
your environments.

14.6.3.13 Validation and Testing
Confi guration management and testing are closely related in many ways. The
ITIL framework does a great job of pointing out that your configuration man-
agement processes need to include a testing function. Testing is implicit in eve-
rything that we do, and improving your automated and manual testing proc-
esses will significantly impact your quality and productivity. For example, the
deployment of a release is never considered complete until a smoke test has
been successfully executed. If the smoke test fails, you will most likely need to
roll back the release. Confi guration management best practices make backing
out a change possible (without unexpected problems) and help to improve your
quality and productivity. Even small changes should always be tested. The re-
lease baseline should also be validated by conducting a confi guration audit, as
described previously in this book. The validation process must be automated;
otherwise, it will likely not be practical to conduct it on a regular basis. Some
good tools automate this process, and you should consider validation and test-
ing to be part of your required CM best practices.

14.6.3.14 Conclusion
In my opinion, the itSMF’s ITIL framework raises the bar in many ways by
recommending excellent CM best practices. You might find that it requires a
journey to implement all of these best practices. You absolutely should use ITIL
in concert with other frameworks such as Cobit or the CMMI. You should
also make use of existing standards from the standards organizations such as
the IEEE to provide the detailed guidance to support all of your processes (es-
pecially development where ITIL is less focused). It is certainly a great time to
be in the process-improvement industry, when good processes are so critical to
organizational productivity and there are so many excellent sources of CM best
practices. Another excellent source is the IEEE’s Software Engineering Body of
Knowledge (SWEBOK).

ptg

Chapter 14 Industry Standards and Frameworks214

14.6.4 SWEBOK

The purpose of the guide to the Software Engineering Body of Knowledge (SWE-
BOK) is to provide a consensually validated characterization of the bounds of
the software engineering discipline and to provide topical access to the body of
knowledge supporting that discipline. The body of knowledge is subdivided into
ten software engineering knowledge areas (KAs) plus an additional chapter pro-
viding an overview of the KAs of strongly related disciplines. The descriptions
of the KAs are designed to discriminate among the various important concepts,
permitting readers to find their way quickly to subjects of interest. On fi nding
a subject, readers are referred to key papers or book chapters selected because
they succinctly present the knowledge. 3

3 SWEBOK, 2004

The SWEBOK knowledge areas include

● Requirements

● Design

● Construction

● Testing

● Maintenance

● Confi guration management

● Engineering management

● Engineering process

● Engineering tools and methods

●

Software Quality

14.6.4.1 Software Configuration Management in SWEBOK
For SWEBOK, software configuration management (SCM) is the discipline of
identifying the configuration of software at distinct points in time for the pur-
pose of systematically controlling changes to the configuration and maintaining
the integrity and traceability of the confi guration throughout the system lifecy-
cle. The CM KA comprises six subareas:

● Management of the SCM process. Management of the SCM process
covers the topics of the organizational context for SCM, constraints and

ptg

14.6 Industry Frameworks 215

guidance for SCM, planning for SCM, the SCM plan itself, and surveil-
lance of SCM.

●

Software configuration identification. Software configuration identifica-
tion identifi es items to be controlled, establishes identification schemes for
the items and their versions, and establishes the tools and techniques to be
used in acquiring and managing controlled items. The first topics in this
subarea are identifi cation of the items to be controlled and the software
library.

●

Software configuration control. Software confi guration control is the
management of changes during the software lifecycle. The topics are (first)
requesting, evaluating, and approving software changes; and (second), im-
plementing software changes; and (third), deviations and waivers.

●

Software configuration status accounting. Software confi guration status
accounting includes topics such as software configuration status informa-
tion and software configuration status reporting.

● Software configuration auditing. This consists of software functional con-
fi guration auditing, software physical confi guration auditing, and in-proc-
ess audits of a software baseline.

● Software release management and delivery. This subarea covers software
building and software release management.

SWEBOK is available for free in HTML form and is harmonized with all the
IEEE standards on an ongoing basis. It’s expected that SWEBOK will mature
and develop into a comprehensive framework.

14.6.5 Open Unifi ed Process (OpenUP)

The Open Unifi ed Process (OpenUP), part of the Eclipse Process Framework,
is an iterative process model that strives to be both agile and lean. The Open
Unifi ed Process applies iterative and incremental approaches within a structured
lifecycle that even in its lighter forms provides a comprehensive development
framework. OpenUP embraces a pragmatic, agile philosophy that focuses on
the collaborative nature of software development. It is a tools-agnostic, low-
ceremony process that can be extended to address a broad variety of project
types. The Unified Process has taken many forms over the years and has evolved
over time. I am resisting going into the history of the Unifi ed Process (and its
open source implementation known as OpenUp) in this book, and instead will
discuss its evolution on the supporting website. The Unifi ed Process is iterative
but curiously supported by many documents (known as artifacts). Too often,

ptg

Chapter 14 Industry Standards and Frameworks216

people believe that they are required to include more artifacts than are really
necessary (making this approach more verbose than necessary). Some of the es-
sential artifacts are the configuration management plan, change request manage-
ment, support for continuous integration, and overall project planning. I have
personally found the topology for organizing testing to be particularly helpful.

Overall, the organization and topology of the OpenUP documents is excel-
lent, and many organizations rely heavily on the Unified Process in one of its
many forms. It has often been said that the key to success with the Unifi ed Proc-
ess is to only use the artifacts that are absolutely necessary and to guide and limit
your selection by repeatedly asking yourself this question: What bad thing could
happen if we do not include this artifact?

14.6.6 Agile/SCRUM

Agility just works. If you are not yet working on becoming more agile, you need
to start today. Agile refocuses on what really matters in the software develop-
ment effort. There are many good books on Agile development, and that is not
the focus of this book. However, I do want to include a few important points
in this chapter as they relate to CM best practices. Agile focuses us on realizing
that we might not be able to know all of our requirements up front. Being hon-
est about what we know and what we don’t yet understand is essential in any
process-improvement effort. By the same token, you need to realize when docu-
menting your requirements is necessary. Many times, document traceability is
an absolute requirement for regulatory purposes. I believe that you can become
agile and still pass your audit. Providing standards to support Agile is an im-
portant part of this effort. I am working with other technology professionals to
provide additional industry standards to support Agile so that you can enjoy the
benefi ts of agility and still pass your next audit.

14.6.6.1 Rapid Build and Deploy Support Agility
Confi guration management best practices help support Agile development by
providing rapid (automated) procedures to build, package, and deploy applica-
tions on an iterative basis. In my opinion, Agile development is not possible
without excellent CM best practices. One of the most well-respected CM best
practices is continuous integration.

14.6.6.2 Continuous Integration
Martin Fowler and others have done an excellent job of promoting continuous
integration (CI) as a best practice that is implicit in Agile development. CI is usu-
ally implemented as an automatic build (and deploy to a test environment) that is
triggered by code being checked in (or committed) to the source code management
repository. This is the classic approach to CI, although I have seen organizations

ptg

217Conclusion

where nightly builds were preferable to immediate builds triggered by a code
check-in (or commit). Nonetheless, integrating your code early and often is im-
plicit in becoming agile and a core CM best practice, too. Agile CM is evolving
quickly and could easily be the subject of a complete book by itself.

Conclusion

Technology professionals are fortunate to enjoy many excellent industry stand-
ards and frameworks that help to guide their process-improvement efforts. You
need to assess your own organizational goals and choose wisely when you begin
your own process-improvement journey. My advice is to always trim down your
process to what is absolutely required and necessary. This is consistent with the
very popular Lean development practices. You should also freely harmonize
standards and frameworks to gain valuable guidance on how to implement CM
best practices!

ptg

This page intentionally left blank

ptg

219

Index

A

a priori change control, 58, 62
active listening, 148-149
after-action reviews, 71
Agile, 118, 216-217
ALM (application lifecycle management),

26
ANSI/ITAA EIA-649-A standard, 196
Ant, 38

for complex builds, 39-40
Maven versus, 39

Appleton, Brad, 121
application architecture. See architecture
application lifecycle management (ALM),

26
applying psychology. See psychology
approval process in change control,

forged approvals example, 69
architecture, CM (configuration manage-

ment) and, 94-99
build engineering in, 103
changes to architecture, 101-102
CMDD (confi guration management-

driven development), 101
goals of, 98
importance of, 99
source code management in, 102-103
starting point for, 99
testing, role of, 99-101
training, 102-103

assessments, configuration management,
183-185. See also audits

asset management in ITIL framework,
210

audits. See also assessments; configura-
tion audits

FDIC audit, 177-179
NARA audit, 179-181

B

bad builds, 31
balancing risk, 158
baselines in source code management,

8-10
Berczuk, Steve, 121
best practices . See also compliance

in build engineering, 47
in deployment, 87-90
in environment configuration, 57
moral argument for, 182-183

birth order roles in personality, 150-152
fi rstborns as leaders, 150-151
middle-borns as compromisers, 151
only children, 151-152
self-expression, 152
youngests as initiators, 151

blackbox testing, 154
blindness example (process improve-

ment), 116
“Bob method” for training, 24-25
branching in source code management,

11-12
bugfi xes, 12-13
copybranches versus deltas, 12-13

branding executables, 32
breaking rules in workplace culture,

157-158
budget for source code management,

23-24
bugfi xes in source code management,

12-13
build engineering, xxxiv, 27-30

in architecture development, 103
best practices, 47
build process improvements, 42-44
compile dependency management,

33-34
continuous integration (CI) versus

nightly builds, 47-48
cost of quality, 42

ptg

Index220

ethical issues, 36-37
future of, 48
goals of, 30
importance of, 31
independent builds, 34-35
organizational structure, 37-38
overengineering, 35-36
as part of development team, 153-154
principles of, 30-31
release management and, 79
responsibilities in, 32
role of build engineer, 44-46
starting point for, 32
technology architecture, importance of,

46-47
tool selection, 38-42
version IDs, 32-33

build frameworks, 41

C

CAB (change advisory board), 63, 209
Capability Maturity Model (CMM), 116-

117, 207-208
Capability Maturity Model Integrated

(CMMI), 116-117, 128, 185, 207-
208

CCB (change control board), 61. See also
change control

centralized environment CMDBs, 55-56
change advisory board (CAB), 63, 209
change control, x xxiv, 58-60

a priori change control, 62
after-action reviews, 71

change advisory board (CAB), 63
as CM process driver, 69-70
in Cobit framework, 198-203
confi guration control, 62-63
creating change control function, 65
e-change control, 67
emergency change control, 64
entry/exit criteria, 70
environment configuration and, 56
evaluating, 71
examples

forged approvals example, 69
investment bank example, 66-67
team conflict, 65
trading fi rm example, 67

gatekeeping, 62
goals of, 60
hierarchy of, 67
importance of, 61
in ITIL framework, 209
principles of, 60-61
process engineering, 64
risk in, 69
senior management oversight of, 64-65
specialized change control, 67
starting point for, 61
system integration, 70
time management of, 66

change control board (CCB), 61. See also
change control

changesets in source code management,
16

checkouts, reserved versus unreserved,
10-11

CI (continuous integration), 40, 47-48,
216-217

CI servers, 40
CIs (configuration items) , xxxiii , 6, 32

defi ned, 189-190
in hardware confi guration manage-

ment, 107-108
release maps of, 77

CM (confi guration management)
architecture and, 94-99

build engineering in, 103
changes to architecture, 101-102
CMDD (confi guration management-
driven development), 101

goals of, 98
importance of, 99
source code management in, 102-103
starting point for, 99
testing, role of, 99-101
training, 102-103

assessments, 183-185
change control as process driver, 69-70
core functional areas, xxxiv
defi ned, x xxiv-xxxvi
goals of , xxxvii
hardware confi guration management.

See hardware configuration manage-
ment

personality and. See personality
terminology, xxxiv-xxxvi

ptg

Index 221

CMDB (confi guration management
database)

centralized environment CMDBs, 55-56
in ITIL framework, 211-213

CMDD (confi guration management-driv-
en development), 101

CMM (Capability Maturity Model), 116-
117, 207-208

CMMI (Capability Maturity Model Inte-
grated), 116-117, 128, 185, 207-208

CMS (configuration management system)
in ITIL framework, 210

Cobit framework, 176-177, 197-207
change control, 198-203
emergency change control, 199
metrics, 199
problems with, 197
process improvement, 203-207
scaling, 200

cockpit of plane example, 44
code management. See source code man-

agement
code promotion support in environment

confi guration, 52
code regression, avoiding, 33
code variants. See variant management
collaboration, psychology of, 153
commercial tools, open source tools

versus, 21
Committee of Sponsoring Organizations

(COSO), 175-176
communicating release status, 80
communication styles, 147

active listening, 148-149
consultation methods, 148
gender differences in, 147-148

communications planning in deployment,
92-93

compile dependency management in build
engineering, 33-34

compliance, 168-172. See also best practices
Cobit framework, 176-177
confi guration management assessments,

183-185
conformance versus, 192-193
COSO (Committee of Sponsoring

Organizations), 175-176
GAO (Government Accountability Of-

fi ce) FDIC audit, 177-179

GAO (Government Accountability Of-
fi ce) NARA audit, 179-181

goals of, 172-173
HIPAA (Health Insurance Portability

and Accountability Act of 1996),
177

importance of, 173
improving quality and productivity via,

183
moral argument for, 182-183
OCC (Office of the Comptroller of the

Currency), 181
requirements, 181-182
SOX (Sarbanes-Oxley Act of 2002),

174-175
starting point for, 173-174

compromisers, middle-borns as, 151
“conducting bakeoffs,” 42
confi guration audits, x xxvi, 90, 191
confi guration control, 62-63

defi ned, 190
release management and, 81

confi guration identifi cation, x xxvi, 190
confi guration items (CIs), x xxiii, 6, 32

defi ned, 189-190
in hardware confi guration manage-

ment, 107-108
release maps of, 77

confi guration management. See CM (con-
fi guration management)

confi guration management assessments,
183-185

confi guration management database
(CMDB)

centralized environment CMDBs,
55-56

in ITIL framework, 211-213
confi guration management driven devel-

opment (CMDD), 101
confi guration management system (CMS)

in ITIL framework, 210
confi guration management-driven devel-

opment (CMDD), 101
confi guration status accounting (CSA),

191
confl ict between teams in change control,

65
confl ict of interest in build engineering,

37

ptg

Index222

conformance, noncompliance versus,
192-193

consensus, failing to gain, 165
consultation methods for communication

improvement, 148
continuous integration (CI), 40, 47-48,

216-217
coordination function, release manage-

ment as, 80-81
copybranches in source code manage-

ment, 12-13
corporate culture. See culture
COSO (Committee of Sponsoring Or-

ganizations), 175-176
cost of quality

for build engineering, 42
for source code management, 23-24

cryptography, signing release packages
with, 82

CSA (confi guration status accounting),
191

culture
matching process to, 127-128
personality and, 156-159

acceptance of others, 157
loose cannons, 157-158
standards, following, 156, 158

CVS, 4

D
database dependencies in environment

confi guration, 52-55
Davidson, James Duncan, 38
defect tracking in source code manage-

ment, 16-17, 26
defi nitive media library (DML) in ITIL

framework, 210
deltas in source code management, 12-13
Deming, W. Edwards, 71, 114, 119, 162,

163, 202
dependencies

in build engineering, 33-34
in hardware confi guration manage-

ment, 108
runtime dependencies. See environ-

ment confi guration

deployment, 83-86. See also release man-
agement

best practices, 87-90
communications planning, 92-93
confi guration audits, 90
of fi rmware changes, 109
goals of, 86
importance of, 87
improvements to, 93-94
interface control, 92
in ITIL framework, 210
principles of, 86-87
responsibility for, 93
smoke test, 92
staging process, 87-89
starting point for, 87
“trust, but verify,” 93

deployment frameworks, 89
design documents in hardware configura-

tion management, 107-108
DML (defi nitive media library) in ITIL

framework, 210
DSM-IV R psychiatric diagnostic manual,

146

E

e-change control, 67
EIA. See ANSI/ITAA EIA-649-A standard
Electronic Records Archives (ERA) audit,

179-181
emergency change control, 64, 199
entry criteria in change control, 70
environment configuration, x xxiv, 48-50

best practices, 57
centralized environment CMDBs,

55-56
change control and, 56
code promotion support, 52
dependency management, 52-55
environment management in, 57
future of, 57-58
goals of, 50-51
importance of, 51
principles of, 51
starting point for, 51-52

environment management in environment
confi guration, 57

environment monitoring in ITIL frame-
work, 212

ERA (Electronic Records Archives) audit,
179-181

ptg

Index 223

ergonomics of release management, 77-80
Erikson, Erik, 144
errors. See human error
ethical issues in build engineering, 36-37
evaluating change control, 71. See also

selecting
exit criteria in change control, 70
extensibility of source code management

tools, 22

F

“failure is not an option,” 138-139
family dynamics in personality, 155
FDIC (Federal Deposit Insurance Corpo-

ration) audit, 177-179
feature branching in source code manage-

ment, 12-13
Federal Deposit Insurance Corporation

(FDIC) audit, 177-179
Feldman, Stuart, 38
fi rmware changes, deployment of, 109
fi rstborns as leaders, 150-151
forged approvals example (change con-

trol), 69
forgetting to ask for help, 166
fostering teamwork, 131
Fowler, Martin, 216
frameworks

Agile/SCRUM, 216-217
CMM/CMMI, 207-208
Cobit framework, 197-207

change control, 198-203
emergency change control, 199
metrics, 199
problems with, 197
process improvement, 203-207
scaling, 200

goals of, 188
importance of, 188
ITIL framework, 208-213

asset management, 210
change advisory board (CAB), 209
change control, 209
CMS (configuration management
system), 210

confi guration management database
(CMDB), 211-213

defi nitive media library (DML), 210

environment monitoring, 212
process improvement, 212
relationships among systems, 210-211
release management and deployment,
210

service asset and configuration man-
agement (SACM), 209

validation and testing, 213
Open Unifi ed Process, 215-216
standards versus, 196-197
starting point for, 189
SWEBOK framework, 214-215
terminology, 189-193

G

gaining consensus, 165
GAO (Government Accountability Office)

FDIC audit, 177-179
NARA audit, 179-181

gatekeeping change control, 62
gender differences in communication

styles, 147-148
globally distributed teams, source code

management in, 17-18
GNU Make, 38
governance. See compliance
Government Accountability Office (GAO)

FDIC audit, 177-179
NARA audit, 179-181

graybox testing, 154
group dynamics, 154
guerrilla tactics for overcoming resistance

to change, 138-139

H
hardware confi guration management,

103-106
changes to fi rmware, deploying, 109
dependencies in, 108
future of, 109
goals of, 106
importance of, 106
interface control in, 108
starting point for, 107
traceability in, 108-109
version control in, 107-108

ptg

Index224

Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA),
177

hierarchy of change control, 67
HIPAA (Health Insurance Portability and

Accountability Act of 1996), 177
honesty, need for, 168
human error, avoiding in release manage-

ment, 78-79

I

IDEs (integrated development environ-
ments), 25, 40-41

IEEE 828 standard, 193-195
immutable version IDs

in build engineering, 33
in release management, 76-77

implementation time for source code
management, 25

incremental changes in process improve-
ment, 136

indecisiveness, 155
independent builds, 34-35
industrial psychology. See psychology
industry frameworks. See frameworks
industry standards. See standards
information processing preferences,

149-150
initiative of youngest-borns, 151
inner merges in source code management,

15
input from stakeholders, 132-133
integrated development environments

(IDEs), 25, 40-41
interface control, 92

defi ned, 190-191
in hardware configuration manage-

ment, 108
investment bank example (change con-

trol), 66-67
ISACA. See Cobit framework
ISO 10007 standard, 195
ISO/IEC/IEEE 12207 standard, 196
ISO/IEC/IEEE 15288 standard, 196
IT controls, 168-172. See also best prac-

tices
Cobit framework, 176-177
confi guration management assessments,

183-185

COSO (Committee of Sponsoring
Organizations), 175-176

GAO (Government Accountability Of-
fi ce) FDIC audit, 177-179

GAO (Government Accountability Of-
fi ce) NARA audit, 179-181

goals of, 172-173
HIPAA (Health Insurance Portability

and Accountability Act of 1996),
177

importance of, 173
improving quality and productivity via,

183
moral argument for, 182-183
OCC (Office of the Comptroller of the

Currency), 181
requirements, 181-182
SOX (Sarbanes-Oxley Act of 2002),

174-175
starting point for, 173-174

IT standards. See standards
ITIL framework, 208-213

asset management, 210
change advisory board (CAB), 209
change control, 209
CMS (confi guration management

system), 210
confi guration management database

(CMDB), 211-213
defi nitive media library (DML), 210
environment monitoring, 212
process improvement, 212
relationships among systems, 210-211
release management and deployment,

210
service asset and configuration manage-

ment (SACM), 209
validation and testing, 213

itSMF. See ITIL framework
ivory tower, remaining in, 167

J-K
just-in-time process improvement, 120

L
language barriers, 78
leadership

failing to show, 165

ptg

Index 225

of fi rstborns, 150-151
in process improvement, 133

Lean Software Development, 119-120
learning from mistakes. See mistakes,

learning from
lessons learned. See mistakes, learning

from
lifecycle. See ISO/IEC/IEEE 12207 stand-

ard; ISO/IEC/IEEE 15288 standard
listening to organizational rhythm,

134-136

M

MAC SHA1, 82
Make, 38
Maven, 38-39
MBI (Myers-Briggs Inventory), 144
MD5, 82
merging in source code management,

15-16
message verification, 148-149
metadata, 10
metrics in Cobit framework, 199
middle-borns as compromisers, 151
missing the big picture, 163-164
mistakes, learning from, 161-162

examples of mistakes, 163-168
becoming part of problem, 165-166
failing to gain consensus, 165
failing to show leadership, 165
lack of honesty, 168
missing big picture, 163-164
not asking for help, 166
promoting process improvement, 165
remaining in ivory tower, 167
writing release automation, 164

goals of, 162
importance of, 162
lessons learned, 166-167
starting point for, 162
understanding mistakes, 163

moral argument for IT controls, 182-183
Myers-Briggs Inventory (MBI), 144

N
NARA (National Archives and Records

Administration) audit, 179-181

National Archives and Records Adminis-
tration (NARA) audit, 179-181

nightly builds, CI (continuous integra-
tion) versus, 47-48

noncompliance, conformance versus,
192-193

O
 OCC (Office of the Comptroller of the

Currency), 181
OCEAN personality assessment, 144
Offi ce of the Comptroller of the Currency

(OCC), 181
only children, personality of, 151-152
open API for source code management

tools, 22
open source tools, commercial tools

versus, 21
Open Unifi ed Process, 118-119, 215-216
operating systems, release management

support, 82
Optimistic checkout model, 10
organizational structure in build engineer-

ing, 37-38
outer merges in source code management,

16
overengineering

in build engineering, 35-36
in process improvement, 120-121
of source code management tools, 22-23

P
packaging technology, understanding of,

78-79

personality. See also psychology; resist-
ance to change

assessments for understanding, 144
birth order roles, 150-152

fi rstborns as leaders, 150-151
middle-borns as compromisers, 151
only children, 151-152
self-expression, 152
youngests as initiators, 151

communication styles, 147
active listening, 148-149
consultation methods, 148

ptg

Index226

gender differences in, 147-148
defi ned, 143
family dynamics in, 155
goals of understanding, 142-143
information processing preferences,

149-150
workplace culture and, 156-159

acceptance of others, 157
loose cannons, 157-158
standards, following, 156, 158

Poppendieck, Mary and Tom, 119
procedural justice, 132
process consultation, 122
process engineering, 64
process improvement, 109-114

Agile, 118
blindness example, 116
CMMI (Capability Maturity Model

Integrated), 116-117
in Cobit framework, 203-207
goals of, 114-115
importance of, 115
in ITIL framework, 212
just-in-time process improvement, 120
Lean Software Development, 119-120
Open Unifi ed Process, 118-119
overengineering, avoiding, 120-121
process consultation, 122
promoting, 165
resistance to change, overcoming,

123-126
combining with technology training,
134-135

goals of, 126-127
guerrilla tactics for, 138
importance of, 127
improvement from within company,
129-130

incremental changes, 136
leadership, 133
legitimate opposition, 132
listening to organizational rhythm,
134-136

matching process to culture, 127-128
pick your battles, 131
practicality of processes, 133-134
procedural justice, 132
promoting process improvement, 137
psychology and, 129
self-interest, addressing, 137

stakeholder input, 132-133
starting point for, 127
teamwork, encouraging, 131

scene surveys, 130
as service, 137-138
SPIN (Software Process-Improvement

Network), 115
starting point for, 115
sustainability of, 122
technology and, 121
test-driven process improvement

(TDPI), 136
testing in, 121
too little process, 120
verbose processes, 115, 118

processing preferences, 149-150
processing speed, 149-150
processing styles, 149
product maturity for source code man-

agement tools, 21-22
productivity improvement via compli-

ance, 183
promoting code in environment configu-

ration, 52
promoting process improvement, 137,

165
psychology. See also personality

listening to organizational rhythm,
134-136

process improvement and, 129
workplace applications of, 152-155

collaboration, 153
group dynamics, 154
teamwork, 153
testers and build engineers in develop-
ment team, 153-154

Q
quality improvement via compliance, 183

R
RCS, 4
regression. See code regression
release automation, writing, 164
release calendars, 80-81
release engineering , xxxiv
release management, 71-74. See also

deployment

ptg

Index 227

build engineering and, 79
confi guration control and, 81
as coordination function, 80-81
ergonomics of, 77-80
future of, 81-82
goals of, 74
importance of, 75
in ITIL framework, 210
principles of, 74-75
requirements tracking, 81
starting point for, 75
version IDs, 76-77

release maps, 77
release status, communicating, 80
requirements for compliance, 181-182
requirements tracking

in release management, 81
in source code management, 16-17, 26

reserved checkouts, unreserved checkouts
versus, 10-11

resistance to change, overcoming, 123-
126. See also personality

combining with technology training,
134-135

goals of, 126-127
guerrilla tactics for, 138
importance of, 127
improvement from within company,

129-130
incremental changes, 136
leadership, 133
legitimate opposition, 132
listening to organizational rhythm,

134-136
matching process to culture, 127-128
pick your battles, 131
practicality of processes, 133-134
procedural justice, 132
promoting process improvement, 137
psychology and, 129
self-interest, addressing, 137
stakeholder input, 132-133
starting point for, 127
teamwork, encouraging, 131

rhythm of organization, listening to,
134-136

rightsizing CM processes. See process
improvement

risks
balancing, 158

in change control, 69
in source code management, 25

RM. See release management
runtime dependencies. See environment

confi guration

S

Sachs, Benjamin K., 119
SACM (service asset and configuration

management), 209
sandboxes, 11
Sarbanes-Oxley Act of 2002, 174-175
scaling, in Cobit framework, 200
SCAMPI (Standard CMMI Appraisal

Method for Process Improvement),
185

SCCS, 4
scene surveys, 130
SCM (source code management). See

source code management
scripts for source code management tools,

22-23
SCRUM, 216-217
selecting

build tools, 38-42
source code management tools, 19-23

self-expression in birth order roles, 152
self-managed teams, 42
senior management oversight of change

control, 64-65
senior management support for source

code management, 9
sensory modalities, 149
separation of controls in compliance

requirements, 182
SEPG (software engineering process

group), 122
service asset and configuration manage-

ment (SACM), 209
services

build engineering as, 103
process improvement as, 137-138
source code management as, 103

signing release packages, 82
smoke test, 92
Software Configuration Management Pat-

terns: Effective Teamwork, Practical
Integration (Berczuk), 121

ptg

Index228

Software Engineering Body of Knowledge
(SWEBOK), 214-215

software engineering process group
(SEPG), 122

Software Process-Improvement Network
(SPIN), 115

source code management , xxxiii-xxxiv
in architecture development, 102-103
baselines, 8-10
changesets, 16
defect and requirements tracking,

16-17, 26
in globally distributed teams, 17-18
goals of, 4-6
implementation time, 25
importance of, 6
principles of, 6
reserved versus unreserved checkouts,

10-11
risks in, 25
sandboxes, 11
senior management support for, 9
starting point for, 7-8
support process for, 25-27
tool selection, 19-23
total cost of ownership, 23-24
training, 24-25
usage model definition, 25
user empowerment, 27
variant management, 11-12

bugfi xes, 12-13
copybranches versus deltas, 12-13
merging, 15-16
streams, 14-15

SOX (Sarbanes-Oxley Act of 2002),
174-175

specialized change control, 67
SPIN (Software Process-Improvement

Network), 115
staging process, 87-89
stakeholder input, 132-133
Standard CMMI Appraisal Method for

Process Improvement (SCAMPI),
185

standards
ANSI/ITAA EIA-649-A standard, 196
frameworks versus, 196-197
goals of, 188
IEEE 828 standard, 193-195
importance of, 188

ISO 10007 standard, 195
ISO/IEC/IEEE 12207 standard, 196
ISO/IEC/IEEE 15288 standard, 196
personality and workplace culture,

156, 158
starting point for, 189
terminology, 184, 189-193

static code analysis, 41
status accounting , xxxvi
streams in source code management,

14-15
subcontractor control

in CMM/CMMI, 208
defi ned, 192

support process for source code manage-
ment, 25-27

sustainability of process improvement,
122

SWEBOK framework, 214-215
system integration of change control, 70
systems architecture. See architecture

T

Tannen, Deborah, 147-148
TDD (test-driven development), 101
TDPI (test-driven process improvement),

136
team conflict in change control, 65
teams, self-managed, 42
teamwork

encouraging, 131
psychology of, 153

technology, process improvement and,
121

technology architecture in build engineer-
ing, importance of, 46-47

technology training, process improvement
and, 134-135

test-driven builds, 43
test-driven development (TDD), 101
test-driven process improvement (TDPI),

136
testing

blackbox versus whitebox versus gray-
box, 154

deployment, 92
in ITIL framework, 213
as part of development team, 153-154
in process improvement, 121, 136

ptg

Index 229

 role in architecture and CM (configura-
tion management), 99-101

third-party training, vendor training
versus, 24

time management in change control, 66
token substitution, 54-55
tool selection

in build engineering, 38-42
in source code management, 19-23

total cost of quality
for build engineering, 42
for source code management, 23-24

traceability
in compliance requirements, 182
in hardware confi guration manage-

ment, 108-109
trading fi rm example (change control), 67
training

in architecture development, 102-103
in build engineering, 42
importance of, 17, 23, 167
in source code management, 24-25
technology training, process improve-

ment and, 134-135
transparency in process improvement,

122
“trust, but verify,” 43 -44, 93

U

unreserved checkouts, reserved checkouts
versus, 10-11

usage model definition in source code
management, 25

user empowerment in source code man-
agement, 27

V
validation, 136, 213
variant management, 11-12

bugfi xes, 12-13
copybranches versus deltas, 12-13
merging, 15-16
streams, 14-15

vendor commitment for source code man-
agement tools, 21-22

vendor control, 192
vendor training, third-party training

versus, 24

verbose processes, 115, 118
verifi cation, 136
verifying the message, 148-149
version control in hardware configura-

tion management, 107-108. See also
source code management

version IDs
in build engineering, 32-33
in release management, 76-77

W-X
whitebox testing, 154
workplace applications of psychology,

152-155
collaboration, 153
group dynamics, 154
teamwork, 153
testers and build engineers in develop-

ment team, 153-154
workplace culture. See culture
workspaces. See sandboxes

Y-Z
youngests as initiators, 151

	Contents
	Preface
	Introduction
	PART I: THE CORE CM BEST PRACTICES FRAMEWORK
	Chapter 1 Source Code Management
	Goals of Source Code Management
	Principles of Source Code Management
	1.1 Why Is Source Code Management Important?
	1.2 Where Do I Start?
	1.3 Source Code Management Core Concepts
	1.4 Defect and Requirements Tracking
	1.5 Managing the Globally Distributed Development Team
	1.6 Tools Selection
	1.7 Recognizing the Cost of Quality (and Total Cost of Ownership)
	1.8 Training
	1.9 Defining the Usage Model
	1.10 Time to Implement and Risks to Success
	1.11 Establishing Your Support Process
	1.12 Advanced Features and Empowering Users
	Conclusion

	Chapter 2 Build Engineering
	Goals of Build Engineering
	Principles of Build Engineering
	2.1 Why Is Build Engineering Important?
	2.2 Where Do I Start?
	2.3 Build Engineering Core Concepts
	2.4 Core Considerations for Scaling the Build Function
	2.5 Build Tools Evaluation and Selection
	2.6 Cost of Quality and Training
	2.7 Making a Good Build Better
	2.8 The Role of the Build Engineer
	2.9 Architecture Is Fundamental
	2.10 Establishing a Build Process
	2.11 Continuous Integration Versus the Nightly Build
	2.12 The Future of Build Engineering
	Conclusion

	Chapter 3 Environment Configuration
	Goals of Environment Configuration Control
	Principles of Environment Configuration Control
	3.1 Why Is Environment Configuration Important?
	3.2 Where Do I Start?
	3.3 Supporting Code Promotion
	3.4 Managing the Configuration
	3.5 Practical Approaches to Establishing a CMDB
	3.6 Change Control Depends on Environment Configuration
	3.7 Minimize the Number of Controls Required
	3.8 Managing Environments
	3.9 The Future of Environment Configuration
	Conclusion

	Chapter 4 Change Control
	Goals of Change Control
	Principles of Change Control
	4.1 Why Is Change Control Important?
	4.2 Where Do I Start?
	4.3 The Seven Types of Change Control
	4.4 Creating a Change Control Function
	4.5 Examples of Change Control in Action
	4.6 Don’t Forget the Risk
	4.7 Driving the CM Process Through Change Control
	4.8 Entry/Exit Criteria
	4.9 After-Action Review
	4.10 Make Sure That You Evaluate Yourself
	Conclusion

	Chapter 5 Release Management
	Goals of Release Management
	Principles of Release Management
	5.1 Why Is Release Management Important?
	5.2 Where Do I Start?
	5.3 Release Management Concepts and Practices
	5.4 The Ergonomics of Release Management
	5.5 Release Management as Coordination
	5.6 Requirements Tracking
	5.7 Taking Release Management to the Next Level
	Conclusion

	Chapter 6 Deployment
	Goals of Deployment
	Principles of Deployment
	6.1 Why Is Deployment Important?
	6.2 Where Do I Start?
	6.3 Practices and Examples
	6.4 Conducting a Configuration Audit
	6.5 Don’t Forget the Smoke Test
	6.6 Little Things Matter a Lot
	6.7 Communications Planning
	6.8 Deployment Should Be Delegated
	6.9 Trust But Verify
	6.10 Improving the Deployment Process
	Conclusion

	PART II: ARCHITECTURE AND HARDWARE CM
	Chapter 7 Architecting Your Application for CM
	Goals of Architecting Your Application for CM
	7.1 Why Is Architecture Important?
	7.2 Where Do I Start?
	7.3 How CM Facilitates Good Architecture
	7.4 What Architects Can Learn From Testers
	7.5 Configuration Management–Driven Development (CMDD)
	7.6 Coping with the Changing Architecture
	7.7 Using Source Code Management to Facilitate Architecture
	7.8 Training Is Essential
	7.9 Source Code Management as a Service
	7.10 Build Engineering as a Service
	Conclusion

	Chapter 8 Hardware Configuration Management
	Goals of Hardware CM
	8.1 Why Is Hardware CM Important?
	8.2 Where Do I Start?
	8.3 When You Can’t Version Control a Circuit Chip
	8.4 Don’t Forget the Interfaces
	8.5 Understanding Dependencies
	8.6 Traceability
	8.7 Deploying Changes to the Firmware
	8.8 The Future of Hardware CM
	Conclusion

	PART III: THE PEOPLE SIDE OF CM
	Chapter 9 Rightsizing Your Processes
	Goals of Rightsizing Your CM Processes
	9.1 Why Is Rightsizing Your Processes Important?
	9.2 Where Do I Start?
	9.3 Verbose Processes Just Get in the Way
	9.4 SPINs and Promoting the CMM
	9.5 Disappearing Verbose Processes
	9.6 The Danger of Having Too Little Process
	9.7 Just-in-Time Process Improvement
	9.8 Don’t Overengineer Your CM
	9.9 Don’t Forget the Technology
	9.10 Testing Your Own Processes
	9.11 Process Consultation
	9.12 Create a Structure for Sustainability
	Conclusion

	Chapter 10 Overcoming Resistance to Change
	Goals of Overcoming Resistance to Change
	10.1 Why Is Overcoming Resistance to Change Important?
	10.2 Where Do I Start?
	10.3 Matching Process to Culture
	10.4 Mixing Psychology and Computer Programming
	10.5 Process Improvement from Within
	10.6 Picking Your Battles
	10.7 Fostering Teamwork
	10.8 Why Good Developers Oppose Process Improvement
	10.9 Procedural Justice
	10.10 Input from Everyone
	10.11 Showing Leadership
	10.12 Process Improvement People May Be the Problem
	10.13 Combining Process and Technology Training
	10.14 Listening to the Rhythm
	10.15 Processes Need to Be Tested
	10.16 Baby Steps and Process Improvement
	10.17 Selling Process Improvement
	10.18 What’s in It for Me?
	10.19 Process Improvement as a Service
	10.20 Guerrilla Tactics for Process Improvement
	Conclusion

	Chapter 11 Personality and CM: A Psychologist Looks at the Workplace
	Goals of Understanding Personality: What’s in It for Me?
	11.1 Personality Primer for CM Professionals
	11.2 What Do CM Experts Need to Consider in Terms of Personality?
	11.3 Applying Psychology to the Workplace
	11.4 Family Dynamics!
	11.5 Workplace Culture and Personality
	Conclusion

	Chapter 12 Learning From Mistakes That I Have Made
	Goals of Learning from Mistakes
	12.1 Why Is It Important to Learn from Our Mistakes?
	12.2 Where Do I Get Started?
	12.3 Understanding Our Mistakes
	12.4 The Mistakes I Have Made
	12.5 Turning a Mistake into a Lesson Learned
	12.6 Common Mistakes That I Have Seen Others Make
	Conclusion

	PART IV: COMPLIANCE, STANDARDS, AND FRAMEWORKS
	Chapter 13 Establishing IT Controls and Compliance
	Goals of Establishing IT Controls and Compliance
	13.1 Why Are IT Controls and Compliance Important?
	13.2 How Do I Get Started?
	13.3 Understanding IT Controls and Compliance
	13.4 Essential Compliance Requirements
	13.5 The Moral Argument for Supporting CM Best Practices
	13.6 Improving Quality and Productivity Through Compliance
	13.7 Conducting a CM Assessment
	Conclusion

	Chapter 14 Industry Standards and Frameworks
	Goals of Using Industry Standards and Frameworks
	14.1 Why Are Standards and Frameworks Important?
	14.2 How Do I Get Started?
	14.3 Terminology Required
	14.4 Applying These Terms to the Standards and Frameworks
	14.5 Industry Standards
	14.6 Industry Frameworks
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X
	Y-Z

